Linking weather variability and climatic pressure dipole in the Antarctic region of Amundsen – Bellingshausen – Weddell Seas
- Amundsen Sea Low,
- Antarctica,
- atmospheric pressure,
- meteorological variables,
- precipitation
- reanalysis ...More
Copyright (c) 2025 Ukrainian Antarctic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The climatic pressure dipole, formed by the Amundsen Sea Low (ASL) and the high-pressure area east of the Antarctic Peninsula (AP), is a major contributor to weather variability in West Antarctica and the peninsula region. Under the ongoing climate change, the role of this pressure configuration often remains uncertain. Using ERA5 reanalysis data for 1991–2022, we investigated the response of precipitation types and near-surface meteorological fields to variability in the climatic pressure dipole. A deepening eastward shift of the ASL increased snowfall over the Amundsen and Bellingshausen Seas, particularly near the low-pressure center itself, while precipitation near the AP tended to shift from solid to mixed or liquid phases. Strengthening of high pressure over the western Weddell Sea – especially when displaced closer to the AP – led to an overall decrease in precipitation, but with more frequent freezing rains and ice pellets over the northeastern AP. These relationships, however, were highly heterogeneous and exhibited strong seasonal features. Near-surface meteorological parameters showed weaker responses to the pressure dipole than precipitation. A deepened ASL generally lowered air temperature and saturation point over the eastern Bellingshausen Sea, while its eastward displacement produced warmer conditions across the study area. A high-pressure ridge east of the AP strongly influenced the thermal regime over the Weddell Sea and Dronning Maud Land, and was associated with intensified southerly and westerly winds in the southern part of the AP. Overall, this study enhances understanding of how surface meteorological conditions generally respond to atmospheric pressure variability in the region.
References
- Andres-Martin, M., Azorin-Molina, C., Serrano, E., González-Herrero, S., Guijarro, J. A., Bedoya-Valestt, S., Utrabo-Carazo, E., & Vicente Serrano, S. M. (2024). Nearsurface wind speed trends and variability over the Antarctic Peninsula, 1979–2022. Atmospheric Research, 309, 107568. https://doi.org/10.1016/j.atmosres.2024.107568
- Ayres, H. C., Ferreira, D., Park, W., Kjellsson, J., & Ödalen, M. (2024). A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions. Weather and Climate Dynamics, 5(2), 805–820. https://doi.org/10.5194/wcd-5-805-2024
- Ayres, H. C., Screen, J. A., Blockley, E. W., & Bracegirdle, T. J. (2022). The coupled atmosphere–ocean response to Antarctic Sea Ice Loss. Journal of Climate, 35(14), 4665–4685. https://doi.org/10.1175/JCLI-D-21-0918.1
- Boothroyd, A., Adams, V., Alexander, K., & Hill, N. (2024). Priority areas for marine protection in the Amundsen and Bellingshausen Seas, Antarctica. Marine Policy, 167, 106232. https://doi.org/10.1016/j.marpol.2024.106232
- Bracegirdle, T. J., Krinner, G., Tonelli, M., Haumann, F. A., Naughten, K. A., Rackow, T., Roach, L. A., & Wainer, I. (2020). Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmospheric Science Letters, 21(9), e984. https://doi.org/10.1002/asl.984
- Cai, W., Gao, L., Luo, Y., Li, X., Zheng, X., Zhang, X., Cheng, X., Jia, F., Purich, A., Santoso, A., Du, Y., Holland, D. M., Shi, J.-R., Xiang, B., & Xie, S.-P. (2023). Southern Ocean warming and its climatic impacts. Science Bulletin, 68(9), 946–960. https://doi.org/10.1016/j.scib.2023.03.049
- Carrasco, J. F., Bozkurt, D., & Cordero, R. R. (2021). A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Science, 28, 100653. https://doi.org/10.1016/j.polar.2021.100653
- Chen, X., Li, S., & Zhang, C. (2023). Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring. Atmospheric and Oceanic Science Letters, 16(5), 100387. https://doi.org/10.1016/j.aosl.2023.100387
- Clem, K. R., Renwick, J. A., & McGregor, J. (2017). Large-scale forcing of the Amundsen Sea Low and its influence on sea ice and West Antarctic temperature. Journal of Climate, 30(20), 8405–8424. https://doi.org/10.1175/JCLI-D-16-0891.1
- Dalaiden, Q., Abram, N. J., Goosse, H., Holland, P. R., O’Connor, G. K., & Topál, D. (2024). Multi-decadal variability of Amundsen Sea Low controlled by natural tropical and anthropogenic drivers. Geophysical Research Letters, 51(16), e2024GL109137. https://doi.org/10.1029/2024GL109137
- ECMWF. (2025a). ERA5: Data documentation. Retrieved October 20, 2025, from https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
- ECMWF. (2025b). Section 2.1.5.5 Types of Precipitation. In Forecast User Guide. Retrieved October 20, 2025, from https://confluence.ecmwf.int/display/FUG/Section+2.1.5.5+Types+of+Precipitation, https://doi.org/10.21957/m1cs7h
- Gao, M., Kim, S.-J., Yang, J., Liu, J., Jiang, T., Su, B., Wang, Y., & Huang, J. (2021). Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmospheric Research, 255, 105533. https://doi.org/10.1016/j.atmosres.2021.105533
- Gilbert, E., Pishniak, D., Torres, J. A., Orr, A., Maclennan, M., Wever, N., & Verro, K. (2025). Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. The Сryosphere, 19(2), 597–618. https://doi.org/10.5194/tc-19-597-2025
- Goyal, R., Jucker, M., Sen Gupta, A., & England, M. H. (2021). Generation of the Amundsen Sea Low by Antarctic orography. Geophysical Research Letters, 48(4), e2020GL091487. https://doi.org/10.1029/2020GL091487
- Hellmuth, F., Carlsen, T., Daloz, A. S., David, R. O., Che, H., & Storelvmo, T. (2025). Evaluation of biases in mid-to- high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations. Atmospheric Chemistry and Physics, 25(2), 1353–1383. https://doi.org/10.5194/acp-25-1353-2025
- Hepworth, E., Messori, G., & Vichi, M. (2024). Synoptic-scale extreme variability of winter Antarctic sea-ice concentration and its link to Southern Ocean extratropical cyclones. Journal of Geophysical Research: Oceans, 129(6), e2023JC019825. https://doi.org/10.1029/2023JC019825
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Retrieved August 15, 2025, from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview, https://doi.org/10.24381/cds.adbb2d47
- Hughes, K. A., Convey, P., & Turner, J. (2021). Developing resilience to climate change impacts in Antarctica: An evaluation of Antarctic Treaty System protected area policy. Environmental Science & Policy, 124, 12–22. https://doi.org/10.1016/j.envsci.2021.05.023
- Intergovernmental Panel on Climate Change (IPCC). (2022). The Ocean and Cryosphere in a Changing Climate. Cambridge University Press. https://doi.org/10.1017/9781009157964
- Kochtubajda, B., Mooney, C., & Stewart, R. (2017). Characteristics, atmospheric drivers and occurrence patterns of freezing precipitation and ice pellets over the Prairie Provinces and Arctic Territories of Canada: 1964–2005. Atmospheric Research, 191, 115–127. https://doi.org/10.1016/j.atmosres.2017.03.005
- Li, R., Li, G., Hai, G., Xie, H., Cheng, Y., Chen, W., Cui, X., Ding, M., Gao, C., Hao, T., Ke, C., Li, C., Li, J., Liu, Y., Ran, J., Ren, J., Shen, Q., Shen, Y., Shi, H., …& Zhou, C. (2024). Reconciled estimation of Antarctic ice sheet mass balance and contribution to global sea level change from 1996 to 2021. Science China Earth Sciences, 67(11), 3562–3578. https://doi.org/10.1007/s11430-023-1394-5
- Lim, E.-P., Hendon, H. H., Arblaster, J. M., Delage, F., Nguyen, H., Min, S.-K., & Wheeler, M. C. (2016). The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophysical Research Letters, 43(13), 7160–7167. https://doi.org/10.1002/2016GL069453
- Naakka, T., Nygård, T., & Vihma, T. (2021). Air moisture climatology and related physical processes in the Antarctic on the basis of ERA5 reanalysis. Journal of Climate, 34(11), 4463–4480. https://doi.org/10.1175/JCLID-20-0798.1
- Orr, A., Deb, P., Clem, K. R., Gilbert, E., Bromwich, D. H., Boberg, F., Colwell, S., Hansen, N., Lazzara, M. A., Mooney, P. A., Mottram, R., Niwano, M., Phillips, T., Pishniak, D., Reijmer, C. H., van de Berg, W. J., Webster, S., & Zou, X. (2023). Characteristics of surface “Melt Potential” over Antarctic Ice Shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19. Journal of Climate, 36(10), 3357–3383. https://doi.org/10.1175/JCLID-22-0386.1
- Orr, A., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang, C.-G., van Lipzig, N. P. M., Cresswell, D., & King, J. C. (2008). Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of Westerly Circumpolar Winds. Journal of the Atmospheric Sciences, 65(4), 1396–1413. https://doi.org/10.1175/2007JAS2498.1
- Press, A. J., & Constable, A. J. (2022). Conservation law in Antarctica and the Southern Ocean: The Antarctic Treaty System, conservation, and environmental protection. Australian Journal of International Affairs, 76(3), 305–323. https://doi.org/10.1080/10357718.2022.2057920
- Pysarenko, L., Pishniak, D., & Savenets, M. (2023). Variability of extreme precipitation in West Antarctica and its response to the Amundsen Sea Low changes. Ukrainian Antarctic Journal, 21(2(27), 175–189. https://doi.org/10.33275/1727-7485.2.2023.716
- Raphael, M. N., Holland, M. M., Landrum, L., & Hobbs, W. R. (2019). Links between the Amundsen Sea Low and sea ice in the Ross Sea: seasonal and interannual relationships. Climate Dynamics, 52(3–4), 2333–2349. https://doi.org/10.1007/s00382-018-4258-4
- Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M., & Hobbs, W. R. (2016). The Amundsen Sea Low: Variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society, 97(1), 111–121. https://doi.org/10.1175/BAMS-D-14-00018.1
- Reboita, M. S., Nieto, R., da Rocha, R. P., Drumond, A., Vázquez, M., & Gimeno, L. (2019). Characterization of moisture sources for austral seas and relationship with sea ice concentration. Atmosphere, 10(10), 627. https://doi.org/10.3390/atmos10100627
- Roussel, M.-L., Lemonnier, F., Genthon, C., & Krinner, G. (2020). Brief communication: evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. The Cryosphere, 14(8), 2715–2727. https://doi.org/10.5194/tc-14-2715-2020
- Schlosser, E., Powers, J. G., Duda, M. G., & Manning, K. W. (2011). Interaction between Antarctic sea ice and synoptic activity in the circumpolar trough: implications for ice-core interpretation. Annals of Glaciology, 52(57), 9–17. https://doi.org/10.3189/172756411795931859
- Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., … & Wouters, B. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222. https://doi.org/10.1038/s41586-018-0179-y
- Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J., Stroeve, J., & Vaughan, D. (2019). The Antarctic Peninsula under a 1.5 °C global warming scenario. Frontiers in Environmental Science, 7, 102. https://doi.org/10.3389/fenvs.2019.00102
- Tetzner, D., Thomas, E., & Allen, C. (2019). A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth Land Region, and its implications for ice core studies. Geosciences, 9(7), 289. https://doi.org/10.3390/geosciences9070289
- Tobin, D. M., Kumjian, M. R., Oue, M., & Kollias, P. (2023). Refreezing of partially melted hydrometeors: Polarimetric radar observations and microphysical model simulations. Journal of the Atmospheric Sciences, 80(3), 725–741. https://doi.org/10.1175/JAS-D-22-0174.1
- Turner, J., Harangozo, S. A., Marshall, G. J., King, J. C., & Colwell, S. R. (2002). Anomalous atmospheric circulation over the Weddell Sea, Antarctica during the Austral summer of 2001/02 resulting in extreme sea ice conditions. Geophysical Research Letters, 29(24), 13-1–13-4. https://doi.org/10.1029/2002GL015565
- Turner, J., Leonard, S., Lachlan-Cope, T., & Marshall, G. J. (1998). Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model. Annals of Glaciology, 27, 591–596. https://doi.org/10.3189/1998AoG27-1-591-596
- Turner, J., Lu, H., King, J., Marshall, G. J., Phillips, T., Bannister, D., & Colwell, S. (2021). Extreme temperatures in the Antarctic. Journal of Climate, 34(7), 2653–2668. https://doi.org/10.1175/JCLI-D-20-0538.1
- Turner, K. A., Naughten, K. A., Holland, P. R., & Naveira Garabato, A. C. (2025). Modeled centennial ocean warming in the Amundsen Sea driven by thermodynamic atmospheric changes, not winds. Geophysical Research Letters, 52(14), e2024GL112287. https://doi.org/10.1029/2024GL112287
- Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., & Berne, A. (2021). Present and future of rainfall in Antarctica. Geophysical Research Letters, 48(8), e2020GL092281. https://doi.org/10.1029/2020GL092281
- Višnjević, V., Moss, G., Henry, A. C. J., Wild, C. T., Steinhage, D., & Drews, R. (2025). Mapping the composition of Antarctic Ice Shelves as a metric for their susceptibility to future climate change. Geophysical Research Letters, 52(12), e2024GL112585. https://doi.org/10.1029/2024GL112585
- Wang, S., Li, G.-C., Zhang, Z.-H., Zhang, W.-Q., Wang, X., Chen, D., Chen, W., & Ding, M.-H. (2025). Recent warming trends in Antarctica revealed by multiple reanalysis. Advances in Climate Change Research, 16(3), 447–459. https://doi.org/10.1016/j.accre.2025.03.003
- Wang, S., Liu, G., Ding, M., Chen, W., Zhang, W., & Lv, J. (2021). Potential mechanisms governing the variation in rain/snow frequency over the northern Antarctic Peninsula during austral summer. Atmospheric Research, 263, 105811. https://doi.org/10.1016/j.atmosres.2021.105811
- Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., & Codron, F. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD033788. https://doi.org/10.1029/2020JD033788
- Worster, M. G. (2014). Dynamics of marine ice sheets. Procedia IUTAM, 10, 263–272. https://doi.org/10.1016/j.piutam.2014.01.022
- Zhang, C., Zhang, J., & Wu, Q. (2021). Antarctic Peninsula regional circulation and its impact on the surface melt of Larsen C Ice Shelf. Journal of Climate, 34(17), 7297–7309. https://doi.org/10.1175/JCLI-D-20- 1002.1
