Ukrainian Antarctic Journal

Vol 23 No 2(31) (2025): Ukrainian Antarctic Journal
Articles

Linking weather variability and climatic pressure dipole in the Antarctic region of Amundsen – Bellingshausen – Weddell Seas

Larysa Pysarenko
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine; State Institution National Antarctic Scientific Center of the Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Mykhailo Savenets
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine
Denys Pishniak
State Institution National Antarctic Scientific Center of the Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Published December 30, 2025
Keywords
  • Amundsen Sea Low,
  • Antarctica,
  • atmospheric pressure,
  • meteorological variables,
  • precipitation,
  • reanalysis
  • ...More
    Less
How to Cite
Pysarenko, L., Savenets, M., & Pishniak, D. (2025). Linking weather variability and climatic pressure dipole in the Antarctic region of Amundsen – Bellingshausen – Weddell Seas. Ukrainian Antarctic Journal, 23(2(31), 3-29. https://doi.org/10.33275/1727-7485.2.2025.748

Abstract

The climatic pressure dipole, formed by the Amundsen Sea Low (ASL) and the high-pressure area east of the Antarctic Peninsula (AP), is a major contributor to weather variability in West Antarctica and the peninsula region. Under the ongoing climate change, the role of this pressure configuration often remains uncertain. Using ERA5 reanalysis data for 1991–2022, we investigated the response of precipitation types and near-surface meteorological fields to variability in the climatic pressure dipole. A deepening eastward shift of the ASL increased snowfall over the Amundsen and Bellingshausen Seas, particularly near the low-pressure center itself, while precipitation near the AP tended to shift from solid to mixed or liquid phases. Strengthening of high pressure over the western Weddell Sea – especially when displaced closer to the AP – led to an overall decrease in precipitation, but with more frequent freezing rains and ice pellets over the northeastern AP. These relationships, however, were highly heterogeneous and exhibited strong seasonal features. Near-surface meteorological parameters showed weaker responses to the pressure dipole than precipitation. A deepened ASL generally lowered air temperature and saturation point over the eastern Bellingshausen Sea, while its eastward displacement produced warmer conditions across the study area. A high-pressure ridge east of the AP strongly influenced the thermal regime over the Weddell Sea and Dronning Maud Land, and was associated with intensified southerly and westerly winds in the southern part of the AP. Overall, this study enhances understanding of how surface meteorological conditions generally respond to atmospheric pressure variability in the region.

References

  1. Andres-Martin, M., Azorin-Molina, C., Serrano, E., González-Herrero, S., Guijarro, J. A., Bedoya-Valestt, S., Utrabo-Carazo, E., & Vicente Serrano, S. M. (2024). Nearsurface wind speed trends and variability over the Antarctic Peninsula, 1979–2022. Atmospheric Research, 309, 107568. https://doi.org/10.1016/j.atmosres.2024.107568
  2. Ayres, H. C., Ferreira, D., Park, W., Kjellsson, J., & Ödalen, M. (2024). A comparison of the atmospheric response to the Weddell Sea Polynya in atmospheric general circulation models (AGCMs) of varying resolutions. Weather and Climate Dynamics, 5(2), 805–820. https://doi.org/10.5194/wcd-5-805-2024
  3. Ayres, H. C., Screen, J. A., Blockley, E. W., & Bracegirdle, T. J. (2022). The coupled atmosphere–ocean response to Antarctic Sea Ice Loss. Journal of Climate, 35(14), 4665–4685. https://doi.org/10.1175/JCLI-D-21-0918.1
  4. Boothroyd, A., Adams, V., Alexander, K., & Hill, N. (2024). Priority areas for marine protection in the Amundsen and Bellingshausen Seas, Antarctica. Marine Policy, 167, 106232. https://doi.org/10.1016/j.marpol.2024.106232
  5. Bracegirdle, T. J., Krinner, G., Tonelli, M., Haumann, F. A., Naughten, K. A., Rackow, T., Roach, L. A., & Wainer, I. (2020). Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmospheric Science Letters, 21(9), e984. https://doi.org/10.1002/asl.984
  6. Cai, W., Gao, L., Luo, Y., Li, X., Zheng, X., Zhang, X., Cheng, X., Jia, F., Purich, A., Santoso, A., Du, Y., Holland, D. M., Shi, J.-R., Xiang, B., & Xie, S.-P. (2023). Southern Ocean warming and its climatic impacts. Science Bulletin, 68(9), 946–960. https://doi.org/10.1016/j.scib.2023.03.049
  7. Carrasco, J. F., Bozkurt, D., & Cordero, R. R. (2021). A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Science, 28, 100653. https://doi.org/10.1016/j.polar.2021.100653
  8. Chen, X., Li, S., & Zhang, C. (2023). Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring. Atmospheric and Oceanic Science Letters, 16(5), 100387. https://doi.org/10.1016/j.aosl.2023.100387
  9. Clem, K. R., Renwick, J. A., & McGregor, J. (2017). Large-scale forcing of the Amundsen Sea Low and its influence on sea ice and West Antarctic temperature. Journal of Climate, 30(20), 8405–8424. https://doi.org/10.1175/JCLI-D-16-0891.1
  10. Dalaiden, Q., Abram, N. J., Goosse, H., Holland, P. R., O’Connor, G. K., & Topál, D. (2024). Multi-decadal variability of Amundsen Sea Low controlled by natural tropical and anthropogenic drivers. Geophysical Research Letters, 51(16), e2024GL109137. https://doi.org/10.1029/2024GL109137
  11. ECMWF. (2025a). ERA5: Data documentation. Retrieved October 20, 2025, from https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
  12. ECMWF. (2025b). Section 2.1.5.5 Types of Precipitation. In Forecast User Guide. Retrieved October 20, 2025, from https://confluence.ecmwf.int/display/FUG/Section+2.1.5.5+Types+of+Precipitation, https://doi.org/10.21957/m1cs7h
  13. Gao, M., Kim, S.-J., Yang, J., Liu, J., Jiang, T., Su, B., Wang, Y., & Huang, J. (2021). Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmospheric Research, 255, 105533. https://doi.org/10.1016/j.atmosres.2021.105533
  14. Gilbert, E., Pishniak, D., Torres, J. A., Orr, A., Maclennan, M., Wever, N., & Verro, K. (2025). Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. The Сryosphere, 19(2), 597–618. https://doi.org/10.5194/tc-19-597-2025
  15. Goyal, R., Jucker, M., Sen Gupta, A., & England, M. H. (2021). Generation of the Amundsen Sea Low by Antarctic orography. Geophysical Research Letters, 48(4), e2020GL091487. https://doi.org/10.1029/2020GL091487
  16. Hellmuth, F., Carlsen, T., Daloz, A. S., David, R. O., Che, H., & Storelvmo, T. (2025). Evaluation of biases in mid-to- high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations. Atmospheric Chemistry and Physics, 25(2), 1353–1383. https://doi.org/10.5194/acp-25-1353-2025
  17. Hepworth, E., Messori, G., & Vichi, M. (2024). Synoptic-scale extreme variability of winter Antarctic sea-ice concentration and its link to Southern Ocean extratropical cyclones. Journal of Geophysical Research: Oceans, 129(6), e2023JC019825. https://doi.org/10.1029/2023JC019825
  18. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Retrieved August 15, 2025, from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview, https://doi.org/10.24381/cds.adbb2d47
  19. Hughes, K. A., Convey, P., & Turner, J. (2021). Developing resilience to climate change impacts in Antarctica: An evaluation of Antarctic Treaty System protected area policy. Environmental Science & Policy, 124, 12–22. https://doi.org/10.1016/j.envsci.2021.05.023
  20. Intergovernmental Panel on Climate Change (IPCC). (2022). The Ocean and Cryosphere in a Changing Climate. Cambridge University Press. https://doi.org/10.1017/9781009157964
  21. Kochtubajda, B., Mooney, C., & Stewart, R. (2017). Characteristics, atmospheric drivers and occurrence patterns of freezing precipitation and ice pellets over the Prairie Provinces and Arctic Territories of Canada: 1964–2005. Atmospheric Research, 191, 115–127. https://doi.org/10.1016/j.atmosres.2017.03.005
  22. Li, R., Li, G., Hai, G., Xie, H., Cheng, Y., Chen, W., Cui, X., Ding, M., Gao, C., Hao, T., Ke, C., Li, C., Li, J., Liu, Y., Ran, J., Ren, J., Shen, Q., Shen, Y., Shi, H., …& Zhou, C. (2024). Reconciled estimation of Antarctic ice sheet mass balance and contribution to global sea level change from 1996 to 2021. Science China Earth Sciences, 67(11), 3562–3578. https://doi.org/10.1007/s11430-023-1394-5
  23. Lim, E.-P., Hendon, H. H., Arblaster, J. M., Delage, F., Nguyen, H., Min, S.-K., & Wheeler, M. C. (2016). The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophysical Research Letters, 43(13), 7160–7167. https://doi.org/10.1002/2016GL069453
  24. Naakka, T., Nygård, T., & Vihma, T. (2021). Air moisture climatology and related physical processes in the Antarctic on the basis of ERA5 reanalysis. Journal of Climate, 34(11), 4463–4480. https://doi.org/10.1175/JCLID-20-0798.1
  25. Orr, A., Deb, P., Clem, K. R., Gilbert, E., Bromwich, D. H., Boberg, F., Colwell, S., Hansen, N., Lazzara, M. A., Mooney, P. A., Mottram, R., Niwano, M., Phillips, T., Pishniak, D., Reijmer, C. H., van de Berg, W. J., Webster, S., & Zou, X. (2023). Characteristics of surface “Melt Potential” over Antarctic Ice Shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19. Journal of Climate, 36(10), 3357–3383. https://doi.org/10.1175/JCLID-22-0386.1
  26. Orr, A., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang, C.-G., van Lipzig, N. P. M., Cresswell, D., & King, J. C. (2008). Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of Westerly Circumpolar Winds. Journal of the Atmospheric Sciences, 65(4), 1396–1413. https://doi.org/10.1175/2007JAS2498.1
  27. Press, A. J., & Constable, A. J. (2022). Conservation law in Antarctica and the Southern Ocean: The Antarctic Treaty System, conservation, and environmental protection. Australian Journal of International Affairs, 76(3), 305–323. https://doi.org/10.1080/10357718.2022.2057920
  28. Pysarenko, L., Pishniak, D., & Savenets, M. (2023). Variability of extreme precipitation in West Antarctica and its response to the Amundsen Sea Low changes. Ukrainian Antarctic Journal, 21(2(27), 175–189. https://doi.org/10.33275/1727-7485.2.2023.716
  29. Raphael, M. N., Holland, M. M., Landrum, L., & Hobbs, W. R. (2019). Links between the Amundsen Sea Low and sea ice in the Ross Sea: seasonal and interannual relationships. Climate Dynamics, 52(3–4), 2333–2349. https://doi.org/10.1007/s00382-018-4258-4
  30. Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M., & Hobbs, W. R. (2016). The Amundsen Sea Low: Variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society, 97(1), 111–121. https://doi.org/10.1175/BAMS-D-14-00018.1
  31. Reboita, M. S., Nieto, R., da Rocha, R. P., Drumond, A., Vázquez, M., & Gimeno, L. (2019). Characterization of moisture sources for austral seas and relationship with sea ice concentration. Atmosphere, 10(10), 627. https://doi.org/10.3390/atmos10100627
  32. Roussel, M.-L., Lemonnier, F., Genthon, C., & Krinner, G. (2020). Brief communication: evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. The Cryosphere, 14(8), 2715–2727. https://doi.org/10.5194/tc-14-2715-2020
  33. Schlosser, E., Powers, J. G., Duda, M. G., & Manning, K. W. (2011). Interaction between Antarctic sea ice and synoptic activity in the circumpolar trough: implications for ice-core interpretation. Annals of Glaciology, 52(57), 9–17. https://doi.org/10.3189/172756411795931859
  34. Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., … & Wouters, B. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222. https://doi.org/10.1038/s41586-018-0179-y
  35. Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J., Stroeve, J., & Vaughan, D. (2019). The Antarctic Peninsula under a 1.5 °C global warming scenario. Frontiers in Environmental Science, 7, 102. https://doi.org/10.3389/fenvs.2019.00102
  36. Tetzner, D., Thomas, E., & Allen, C. (2019). A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth Land Region, and its implications for ice core studies. Geosciences, 9(7), 289. https://doi.org/10.3390/geosciences9070289
  37. Tobin, D. M., Kumjian, M. R., Oue, M., & Kollias, P. (2023). Refreezing of partially melted hydrometeors: Polarimetric radar observations and microphysical model simulations. Journal of the Atmospheric Sciences, 80(3), 725–741. https://doi.org/10.1175/JAS-D-22-0174.1
  38. Turner, J., Harangozo, S. A., Marshall, G. J., King, J. C., & Colwell, S. R. (2002). Anomalous atmospheric circulation over the Weddell Sea, Antarctica during the Austral summer of 2001/02 resulting in extreme sea ice conditions. Geophysical Research Letters, 29(24), 13-1–13-4. https://doi.org/10.1029/2002GL015565
  39. Turner, J., Leonard, S., Lachlan-Cope, T., & Marshall, G. J. (1998). Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model. Annals of Glaciology, 27, 591–596. https://doi.org/10.3189/1998AoG27-1-591-596
  40. Turner, J., Lu, H., King, J., Marshall, G. J., Phillips, T., Bannister, D., & Colwell, S. (2021). Extreme temperatures in the Antarctic. Journal of Climate, 34(7), 2653–2668. https://doi.org/10.1175/JCLI-D-20-0538.1
  41. Turner, K. A., Naughten, K. A., Holland, P. R., & Naveira Garabato, A. C. (2025). Modeled centennial ocean warming in the Amundsen Sea driven by thermodynamic atmospheric changes, not winds. Geophysical Research Letters, 52(14), e2024GL112287. https://doi.org/10.1029/2024GL112287
  42. Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., & Berne, A. (2021). Present and future of rainfall in Antarctica. Geophysical Research Letters, 48(8), e2020GL092281. https://doi.org/10.1029/2020GL092281
  43. Višnjević, V., Moss, G., Henry, A. C. J., Wild, C. T., Steinhage, D., & Drews, R. (2025). Mapping the composition of Antarctic Ice Shelves as a metric for their susceptibility to future climate change. Geophysical Research Letters, 52(12), e2024GL112585. https://doi.org/10.1029/2024GL112585
  44. Wang, S., Li, G.-C., Zhang, Z.-H., Zhang, W.-Q., Wang, X., Chen, D., Chen, W., & Ding, M.-H. (2025). Recent warming trends in Antarctica revealed by multiple reanalysis. Advances in Climate Change Research, 16(3), 447–459. https://doi.org/10.1016/j.accre.2025.03.003
  45. Wang, S., Liu, G., Ding, M., Chen, W., Zhang, W., & Lv, J. (2021). Potential mechanisms governing the variation in rain/snow frequency over the northern Antarctic Peninsula during austral summer. Atmospheric Research, 263, 105811. https://doi.org/10.1016/j.atmosres.2021.105811
  46. Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., & Codron, F. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD033788. https://doi.org/10.1029/2020JD033788
  47. Worster, M. G. (2014). Dynamics of marine ice sheets. Procedia IUTAM, 10, 263–272. https://doi.org/10.1016/j.piutam.2014.01.022
  48. Zhang, C., Zhang, J., & Wu, Q. (2021). Antarctic Peninsula regional circulation and its impact on the surface melt of Larsen C Ice Shelf. Journal of Climate, 34(17), 7297–7309. https://doi.org/10.1175/JCLI-D-20- 1002.1