Ukrainian Antarctic journal

No 15 (2016): Ukrainian Antarctic Journal
Articles

Conservation of complex adaptability uniqueness in different Deschampsia antarctica Desv. plant genotypes under standardized growth condition in vitro

N. Miryuta
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv
O. Poronnik
Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv
I. Parnikoza
Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv, State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv
V. Grahov
M.M. Gryshko National Botanic Garden, National Academy of Science of Ukraine, Kyiv
G. Myryuta
Institute of Molecular Biology and Genetics , National Academy of Science of Ukraine, Kyiv
N. Kozub
Institute of Plant Protection, The National Academy of Agrarian Sciences of Ukraine
I. Sozinov
Institute of Plant Protection, The National Academy of Agrarian Sciences of Ukraine, Kyiv
V. Kunakh
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv
Published January 18, 2017
Keywords
  • Deschampsia antarctica,
  • plants in vitro,
  • united latent quality indicator of adaptability (ULQIA),
  • plant adaptability

Abstract

Uniqueness of complex adaptability index (united latent quality indicator of adaptability - ULQIA) has been shown to be taken place in plants having different chromosome number among Deschampsia antarctica Desv. (around Argentine Islands region, maritime Antarctic) cultivated under standardized growth condition in -vitro. ULQIA is assumed to express underlying in this plant adaptation process to uniqueness nature condition in dynamic hereditary memory special information in certain degree. It was shown that dynamic hereditary memory was saved in investigated plant genotypes under standardized growth condition in -vitro.

References

  1. Ayvazyan, S. A., Buchstaber, V. M., Yenyukov, I. S., Meshalkin, L. D. (1989). Applied statistics. M. (in Russian)
  2. Zubairova, U. S., Penenko, A. V., Nikolaev, S. V. (2012). Modeling of plant tissue growth and development with L-systems. Vavilov Journal of genetics and breeding. 16(4/1), 816-824. (in Russian)
  3. Zubairova, U. S., Golushko, S. K., Penenko, A. V., Nikolaev, S. V. (2014). An L-system for modeling of unidimensionally growing flat plant tissues. Vavilov Journal of genetics and breeding, 18(4/2), 945-952. (in Russian)
  4. Makarenko, O. A., Levitsky, A. P. (2013). Physiological functions of flavonoids in plants. Physiology and biochemistry of cultivated plants, 45(2), 100-112. (in Russian)
  5. Miryuta, N. Yu., Kunakh, V. A. (2012). Dynamic of cell population systems in vitro. III. Hypothesis of cell differential process self-control and it’s phenomenology of realization by the example of Rauwolfia serpentina benth tissues culture. Biotechnolohii (Biotechnologia Acta), 5(3), 40-52. (in Ukrainian)
  6. Miryuta, N., Parnikoza, I., Miryuta, A., Shvydun, P., Smykla, J., Kozeretska, I., Kunakh, V. (2014). The united latent quality indicator of Deschampsia antarctica Desv. adaptability as reflex of current microconditions in the region of Admiral Bay (King George Island, Maritime Antarctic). Ukrainian Antarctic Journal, 13, 159-174. (in Ukrainian)
  7. Miryuta, N., Parnikoza, I., Shvydun, P., Miryuta, G., Poronnik, O., Kozeretska, I., Kunakh, V. (2015). Porivnial’nyi analiz zvedenoho latentnoho pokaznyka prystosovuvanosti populiatsii Deschampsia antarctica Desv., o. Galindez (Argentyns’ki ostrovy, Mors’ka Anterktyka) [Comparative analysis of the United Quality Latent Index of the populations of Deschampsia antarctica Desv., Galindez Island]. Ukrainskiy antarktychnyi zhurnal, 14, 216-230. (in Ukrainian)
  8. Musienko, M. M., Serebriakov, V. V., Brayonr O. V. (2004). Ekologia: Tlumachnuy slovnyk. [Ecology: a dictionary]. K.: Lybid. (in Ukrainian)
  9. Osterman, L. A. (1981). Metody issledovaniia belkov i nukleinovyh kislot. Elektroforez i ultra-tsentrifugirovanie (practicheskoe posobie) [Research techniques for proteins and nucleic acids. Electrophoresis and ultra-centrifugation: A practical guide]. M.: Nauka. (in Russian.)
  10. Parnikoza, I., Ogeredova, I., Miryuta, N., Kozeretska, I., Smykla, J., Kunakh, V. (2013). The parameters of Deschampsia antarctica population success comparative analyses in the region of Admiral bay (King George Island. The Inshore of Antarctica). Ukrainian Antarctic Journal, 12, 186-198. (in Ukrainian)
  11. Pobezhymova, T. P., Kolesnichenko, A. V., Grabitelnyh, O. I. 2004. Metody izuchenia mitohondriy rasteniy. Poliarografia i elektroforez. [ Methods for studying plant mitochondriae. Polarography and electroforesis]. M.: Nauka. (in Russian)
  12. Pollard, J. H. P. (1982). A handbook of numerical and statistical techniques.
  13. Sozinov, A. A. (1985). Polimorfizm belkov i ego znachenie v genetike i selektsii [Protein polymorphism and its significance in genetics and selection]. M.: Nauka. (in Russian.)
  14. Spiridonova, K. V., Andreev, I. O., Zagrichuk, O. M., Navrotska, D. O., Twardovska, M. O., Drobyk, N. M., Kunakh, V. A. (2016). Genetic stability of micropropagated plants of Deschampsia antarctica Desv. during long-term in vitro culture. Plant physiology and genetics, 48(6), 498-507. (in Ukrainian)
  15. Tchuraev, R. N. (2006). Epigenetics: gene and epigene networks in ontogeny and phylogeny. Genetics, 42(9), 1276-1296. (in Russian)
  16. Shalygo, N. V., Domanskaya, I. N., Radyuk, M. S., Scherbakov, R. A., Dremuk, I. A. (2012). Accumulation of hydrogen peroxide and functioning of defense system in overwatered barley seedlings. Russian Journal of Plant Physiology, 59(6), 748-756. (in Russian)
  17. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Zoshchuk, S. A., Andreev, I. O., Badaeva, E. D., Kunakh, V. A., Muravenko, O. V. (2015). Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLOS ONE, 10(9), Article e0138878.
  18. Andreev, I. O., Spiridonova, E. V., Kyryachenko, S. S., Parnikoza, I. Yu., Maidanyuk, D. N., Volkov, R. A., Kozeretska, I. A., Kunakh, V. A. (2010). Population-genetic analysis of Deschampsia antarctica from two regions of maritime Antarctic. Moscow University Biological Sciences Bulletin, 65(4), 208-210.
  19. Bölter, M., Kappen, L., Meyer, M. (1989). The influence of microclimatic conditions on potential photosynthesis of Usnea sphacelata: A model. Ecological Research, 3, 297-307.
  20. Causton, D. R., Venus, J. C. (1981). The Biometry of Plant Growth. Edward Arnold, London
  21. Conrad, M. (1983). Adaptability, the Significance of Variability from Molecule to Ecosystem. Plenum Press, New York.
  22. Day, A. T., Ruhland, C. T., Xiong, F. S. (2008). Warming increases aboveground plant biomass and C stock in vascular-plant-dominated Antarctic tundra. Global Change Biology, 14, 1827-1843.
  23. Dictionary of Natural Products, ver. 15. (2007). Chapman & Hall/CRC. Hampden Data Services Ltd. Dictionary of Natural Products, ver. 22.2. Taylor & Francis Group, 2014. URL: http://dnp.chemnetbase.com
  24. Dietz, H., Steinlein, T. (1996). Determination of plant species cover by means of image analysis. Journal of Vegetation Science, 7, 131-136.
  25. Fowbert, J. A., Smith, R. L. (1994). Rapid population increases in native vascular plants in the Argentine Islands Antarctic Peninsula. Arctic and Alpine Research, 26, 290-296.
  26. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48, 909-930.
  27. Iordachescu, M., Imai, R. (2008). Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol., 50, 1223-1229.
  28. Kozeretska, I. A., Parnikoza, I. Yu., Mustafa, O., Tyschenko, O. V., Korsun, S. G., Convey, P. (2010). Development of Antarctic herb tundra vegetation near Actowski station, King George Island. Polar Science, 3, 254-261.
  29. Kreps, J., Wu, Y., Chang, H., Zhu, T., Wang, X., Harper, J. (2002). Transcriptome sequencing of the Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol., 130, 2129-2141.
  30. Lee, J., Noh, E. K., Choi, H. S., Shin, S. C., Park, H., Lee, H. (2012). Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta, 237(3), 823-836.
  31. Nakashima, K., Ito Y., Yamaguchi-Shinozaki, K. (2009). Transcriptional Regulatory Networks in Response to Abiotic Stress in Arabidopsis and Grasses 1. Plant Physiol., 149(1), 88-95.
  32. Navrocka, D. O., Twardowska, M. O., Andreev, I. O., Parnikoza, I. Yu., Betekhtin, A. A., Zahrychuk, O. M., Drobyk, N. M., Hasterok, R., Kunakh, V. A. (2014). New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine Islands of the Maritime Antarctic region. Ukrainian Antarctic Journal, 13, 185-191.
  33. Ozheredova, I. P., Parnikoza, I. Yu., Poronnik, O. O., Kozeretska, I. A., Demidov, S. V., Kunakh, V. A. (2015). Mechanisms of Antarctic Vascular Plant Adaptation to Abiotic Environmental Factors. Cytology and Genetics, 49(2), 139-145.
  34. Parnikoza, I., Kozeretska, I., Kunakh, V. (2011a). Vascular Plants of the Maritime Antarctic: Origin and Adaptation. American Journal of Plant Sciences, 2, 381-395.
  35. Parnikoza, I., Loro, P., Miryuta, N. Yu., Kunakh, V. A., Kozeretska, I. A. (2011b). The influence of some Environmental factors on Cytological and Biometric parameters and Chlorophyll content of Deschampsia antarctica Desv. in maritime Antarctic. Cytology and Genetics, 45(3), 170-176.
  36. Parnikoza, I., Miryuta, N., Ozheredova, I., Kozeretska, I., Smykla, J., Kunakh, V., Convey, P. (2015). Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic). Polar Biology, 38(9), 1401-1411.
  37. Royles, J., Amesbury, M. J., Convey, P., Griffiths, H., Hodgson, D. A., Leng, M. J., Charman, D. J. (2013). Plants and soil microbes respond to recent warming on the Antarctic Peninsula. Current Biology, 23, 1702-1706.
  38. Smith, R. I. L. (1994). Vascular plants as indicators of regional warming in Antarctica. Oecologia, 99, 322-328.
  39. Tchuraev, R. N. (2006). General principles of organization and laws of functioning in governing gene networks. In N. Kolchanov, R. Hofesyaedt (Eds.), Bioinformatics of Genome Regulation and Structure (pp. 367-377). Springer Science Media, Inc, New York.
  40. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., Iagovkina, S. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279-294.
  41. Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins, M., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S., Scambos, T., Sparrow, M., Summerhayes, C. P., Speer, K., Klepikov, A. (2013). Antarctic climate change and the environment: an update. Polar Record, 3, 237-259.
  42. Van Loon, L. C. (2009). Plant Innate Immunity. Advances in Botanical Research, 51.
  43. Lee, J., Noh, E. K., Choi, H. S., Shin, S. C., Park, H., Lee, H. (2012). Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta, 237, 823-836.
  44. Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol., 6, 410-417.
  45. Zahrychuk, O. M., Drobyk, N. M., Kozeretska, I. A., Parnikoza, I. Yu., Kunakh, V. A. (2011-2012). Introduction in culture in vitro of Deschampsia antarctica Desv. (Poaceae) from two regions of Maritime Antarctica. Ukrainian Antarctic Journal, 11, 289-295.
  46. Volkov, R. A., Kozeretska, I. A., Kyryachenko, S. S., Andreev, I. O., Maidanyuk, D. N., Parnikoza, I. Yu., Kunakh, V. A. (2010). Molecular evolution and variability of ITS1-ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Science, 4(3), 469-478.