Variability of extreme precipitation in West Antarctica and its response to the Amundsen Sea Low changes
- atmospheric pressure,
- glacier basin,
- ice shelf,
- precipitation,
- 95th percentile of precipitation
Copyright (c) 2023 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Changes in precipitation extremes over West Antarctica and the Antarctic Peninsula belong to the observed consequences of current climate change. We discuss the spatio-temporal patterns of extreme precipitation and their relationships with the Amundsen Sea Low (ASL) parameters. Based on the ERA5 reanalysis data, the 95th percentile of daily precipitation totals was estimated and linked to the ASL parameters over the main glacier basins in the region. The 95th percentile of precipitation varied from 5 mm to over 40 mm over the region, showing higher values along the coastline and reaching the maximum over the west coast of the Antarctic Peninsula. The tendencies of extreme precipitation vary from –3 to 4 mm per decade and enhance the observed spatial distribution differences. On average, extreme precipitation events covered 4.7–4.9% of the basins’ area. All dependencies had a well-detected seasonality. Both total and extreme precipitation varied under the ASL fluctuations, showing significant average-to-strong correlations. The ASL shifts to the west caused a decrease in precipitation over the Amundsen Sea and an increase over the Antarctic Peninsula. The ASL deepening (lower atmospheric pressure of the system) resulted in a precipitation decrease over the Getz Ice Shelf and a precipitation increase over the western part of the Antarctic Peninsula. There are two regions with opposite responses of precipitation to the ASL changes: the western part over the Getz Ice Shelf with nearby marine areas, and the eastern part covering the Antarctic Peninsula, Pine Island glaciers, the Abbot Ice Shelf, and the Bellingshausen Sea. The obtained results are crucial for our understanding of extreme precipitation occurrences over West Antarctica in recent decades under climate change.
References
- Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J., Haimberger, L., Woollen, J., Buontempo, C., & Thépaut, J. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741), 4186–4227. https://doi.org/10.1002/qj.4174
- Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., & Wilson, A. B. (2013). Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2), 139–145. https://doi.org/10.1038/ngeo1671
- Carrasco, J. F., & Cordero, R. R. (2020). Analyzing precipitation changes in the northern tip of the Antarctic Peninsula during the 1970–2019 period. Atmosphere, 11(12), 1270. https://doi.org/10.3390/atmos11121270
- Chittella, S P. S., Deb, P., & van Wessem, J. M. (2022). Relative contribution of atmospheric drivers to “extreme” snowfall over the Amundsen Sea Embayment. Geophysical Research Letters, 49(16), e2022GL098661. https://doi.org/10.1029/2022GL098661
- Chown, S. L., Leihy, R. I., Naish, T. R., Brooks, C. M., Convey, P., Henley, B. J., Mackintosh, A. N., Phillips, L. M., Kennicutt II, M. C., & Grant, S. M. (Eds.). (2022). Antarctic climate change and the environment: a decadal synopsis and recommendations for action. Scientific Committee on Antarctic Research, Cambridge, United Kingdom. Retrieved December 13, 2023, from https://documents.ats.aq/atcm44/att/atcm44_att111_e.pdf
- Chyhareva, A., & Krakovska, S. (2022). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part III: clouds and extreme precipitation. Ukrainian Antarctic Journal, 20(2), 188–202. https://doi.org/10.33275/1727-7485.2.2022.699
- Deb, P., Orr, A., Bromwich, D. H., Nicolas, J. P., Turner, J., & Hosking, J. S. (2018). Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, 45(9), 4124–4133. https://doi.org/10.1029/2018GL077092
- Ehmele, F., Kautz, L.-A., Feldmann, H., & Pinto, J. G. (2020). Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations. Earth System Dynamics, 11(2), 469–490. https://doi.org/10.5194/esd-11-469-2020
- England, M. R., Polvani, L. M., Smith, K. L., Landrum, L., & Holland, M. M. (2016). Robust response of the Amundsen Sea Low to stratospheric ozone depletion. Geophysical Research Letters, 43(15), 8207–8213. https://doi.org/10.1002/2016GL070055
- Gómez-Valdivia, F., Holland, P. R., Siahaan, A., Dutrieux, P., & Young, E. (2023). Projected West Antarctic ocean warming caused by an expansion of the Ross Gyre. Geophysical Research Letters, 50(6), e2023GL102978. https://doi.org/10.1029/2023GL102978
- González-Herrero, S., Vasallo, F., Bech, J., Gorodetskaya, I., Elvira, B., & Justel, A. (2023). Extreme precipitation records in Antarctica. International Journal of Climatology, 43(7), 3125–3138. https://doi.org/10.1002/joc.8020
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
- Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., & Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159, 17–24. https://doi.org/10.21957/VF291HEHD7
- Hosking, S., & National Center for Atmospheric Research Staff (Eds.). (2020). The climate data guide: Amundsen Sea low indices. Retrieved March 12, 2023, from https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices
- Hosking, J. S., Orr, A., Bracegirdle, T. J., & Turner, J. (2016). Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophysical Research Letters, 43(1), 367–376. https://doi.org/10.1002/2015GL067143
- Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., & Phillips, T. (2013). The influence of the Amundsen–Bellingshausen Seas Low on the climate of West Antarctica and its representation in coupled climate model simulations. Journal of Climate, 26(17), 6633–6648. https://doi.org/10.1175/JCLI-D-12-00813.1
- Intergovernmental Panel on Climate Change (IPCC). (2022). The Ocean and Cryosphere in a Changing Climate. Cambridge University Press. https://doi.org/10.1017/9781009157964
- Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896
- Ivanov, M., Warrach-Sagi, K., & Wulfmeyer, V. (2018). Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation. Theoretical and Applied Climatology, 132, 239–261. https://doi.org/10.1007/s00704-017-2077-x
- Lavers, D., Prudhomme, C., & Hannah, D. M. (2013). European precipitation connections with large-scale mean sea-level pressure (MSLP) fields. Hydrological Sciences Journal, 58(2), 310–327. https://doi.org/10.1080/02626667.2012.754545
- Liang, L., Guo, H., Liang, S., Li, X., Moore, J. C., Li, X., Cheng, X., Wu, W., Liu, Y., Rinke, A., Jia, G., Pan, F., & Gong, C. (2023). Delayed Antarctic melt season reduces albedo feedback. National Science Review, 10(9), nwad157. https://doi.org/10.1093/nsr/nwad157
- Nicola, L., Notz, D., & Winkelmann, R. (2023). Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature? The Cryosphere, 17(7), 2563–2583. https://doi.org/10.5194/tc-17-2563-2023
- Otosaka, I. N., Horwath, M., Mottram, R., & Nowicki, S. (2023). Mass Balances of the Antarctic and Greenland Ice Sheets Monitored from Space. Surveys in Geophysics, 44(5), 1615–1652. https://doi.org/10.1007/s10712-023-09795-8
- Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D., Dixon, D. A., Hosking, J. S., Jones, J. M., & Hobbs, W. R. (2016). The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate. Bulletin of the American Meteorological Society, 97(1), 111–121. https://doi.org/10.1175/BAMS-D-14-00018.1
- Reed, A. T., Stansfield, A. M., & Reed, K. A. (2022). Characterizing Long Island’s extreme precipitation and its relationship to tropical cyclones. Atmosphere, 13(7), 1070. https://doi.org/10.3390/atmos13071070
- Schneider, D. P., Deser, C., & Okumura, Y. (2012). An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dynamics, 38(1–2), 323–347. https://doi.org/10.1007/s00382-010-0985-x
- Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., & Lubin, D. (2019). Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt. Journal of Climate, 32(3), 665–684. https://doi.org/10.1175/JCLI-D-18-0233.1
- Tetzner, D., Thomas, E., & Allen, C. (2019). A validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and its implications for ice core studies. Geosciences, 9(7), 289. https://doi.org/10.3390/geosciences9070289
- Turner, J., Lachlan-Cope, T., Colwell, S., & Marshall, G. J. (2005). A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes. Annals of Glaciology, 41, 85–91. https://doi.org/10.3189/172756405781813177
- Turner, J., Comiso, J. C., Marshall, G. J., Lachlan–Cope, T. A., Bracegirdle, T., Maksym, T., Meredith, M. P., Wang, Z., & Orr, A. (2009). Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters, 36(8), L08502. https://doi.org/10.1029/2009GL037524
- Turner, J., Phillips, T., Thamban, M., Rahaman, W., Marshall, G. J., Wille, J. D., Favier, V., Winton, V. H. L., Thomas, E., Wang, Z., van den Broeke, M., Hosking, J. S., & Lachlan-Cope, T. (2019). The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophysical Research Letters, 46(6), 3502–3511. https://doi.org/10.1029/2018GL081517
- Wang, S., Ding, M., Liu, G., & Chen, W. (2022). Processes and mechanisms of persistent extreme rainfall events in the Antarctic Peninsula during austral summer. Journal of Climate, 35(12), 3643–3657. https://doi.org/10.1175/JCLI-D-21-0834.1
- Wang, S., Liu, J., Cheng, X., Yang, D., Kerzenmacher, T., Li, X., Hu, Y., & Braesicke, P. (2023). Contribution of the deepened Amundsen Sea low to the record low Antarctic sea ice extent in February 2022. Environmental Research Letters, 18(5), 054002. https://doi.org/10.1088/1748-9326/acc9d6
- Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., & Codron, F. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD033788. https://doi.org/10.1029/2020JD033788
- Zheng, F., Li, J., Clark, R. T., & Nnamchi, H. C. (2013). Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. Journal of Climate, 26(24), 9860–9879. https://doi.org/10.1175/JCLID-13-00204.1
- Zwally, H. J., Giovinetto, M. B., Beckley, M. A., & Saba, J. L. (2012). Antarctic and Greenland drainage systems, GSFC Cryospheric Sciences Laboratory. Retrieved September 8, 2023, from http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php