Ukrainian Antarctic Journal

Vol 22 No 2(29) (2024): Ukrainian Antarctic Journal
Articles

Lagrangian pathways connecting the Weddell and Bellingshausen Seas

Roman Bezhenar
Institute of the Mathematical Machine and Systems Problems, Kyiv, 03187, Ukraine
Vladimir Maderich
Institute of the Mathematical Machine and Systems Problems, Kyiv, 03187, Ukraine
Igor Brovchenko
Institute of the Mathematical Machine and Systems Problems, Kyiv, 03187, Ukraine
Fabio Boeira Dias
Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
Cecilia Äijälä
Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki, 00100, Finland
Petteri Uotila
Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki, 00100, Finland
Published December 31, 2024
Keywords
  • Antarctic Peninsula,
  • connectivity of ocean circulation,
  • Parcels model,
  • WAOM model
How to Cite
Bezhenar, R., Maderich, V., Brovchenko, I., Boeira Dias, F., Äijälä, C., & Uotila, P. (2024). Lagrangian pathways connecting the Weddell and Bellingshausen Seas. Ukrainian Antarctic Journal, 22(2(29), 163-171. https://doi.org/10.33275/1727-7485.2.2024.734

Abstract

This study assesses the connectivity of currents around the Antarctic Peninsula and identifies the structure of flows carrying virtual particles from the Eastern to Western Antarctic Peninsula continental shelves. We use circulation data for the Weddell and Bellingshausen Seas from the Whole Antarctica Ocean Model to obtain and analyse particle trajectories using the Probably A Really Computationally Efficient Lagrangian Simulator (Parcels) model. The software included the main Parcels kernels and a previously developed kernel that ensures the conservation of the number of particles during flow around irregularities in the bottom relief and the lower edge of ice shelves. We also developed a kernel to simulate convection in the ocean’s upper mixed layer. Around 170 000 virtual particles were released at a depth of 10 m during a year with a spatial step of 1° in two shelf and slope sectors in the southern Weddell Sea where the depth is less than 1500 m. The first sector covers the shelf area between 71°S and 77°S adjacent to the Filchner-Ronne Ice Shelf. The second sector covers the shelf area between 70°S and 65°S adjacent to the Larsen Ice Shelf. The pathways of water masses were characterised by the percentage of particles that visit each 10 × 10 km grid cell at least once in a modelling period of 20 years. 21% of particles cross 58°W (tip of the Antarctic Peninsula), while 70% of particles turn northeast. The smaller sector, adjacent to the Larsen Ice Shelf, is the main source of particles transferred to the Bellingshausen Sea (51%). In contrast, particles released in the larger sector were mostly transported to the northeast (75%). Only 3.4% of the released particles were transported to the west of 80°W, while the Amundsen Sea (105°W) was reached only by 0.1% of released particles. That indicates a virtual lack of circulation connectivity between the Weddell and the Amundsen Seas.

References

  1. Boeira Dias, F., Rintoul, S. R., Richter, O., Galton-Fenzi, B. K., Zika, J. D., Pellichero, V., & Uotila, P. (2023). Sensitivity of simulated water mass transformation on the Antarctic shelf to tides, topography and model resolution. Frontiers in Marine Science, 10, 1027704. https://doi.org/10.3389/fmars.2023.1027704
  2. Csanady, G. T. (1983). Dispersal by randomly varying currents. Journal of Fluid Mechanics, 132, 375–394. https://doi.org/10.1017/S0022112083001664
  3. Dawson, H. R. S., Morrison, A. K., England, M. H., & Tamsitt, V. (2023). Pathways and timescales of connectivity around the Antarctic continental shelf. Journal of Geophysical Research: Oceans, 128(2), e2022JC018962. https://doi.org/10.1029/2022JC018962
  4. Delandmeter, P., & van Sebille, E. (2019). The Parcels v2.0 Lagrangian framework: new field interpolation schemes. Geoscientific Model Development, 12(8), 3571–3584. https://doi.org/10.5194/gmd-12-3571-2019
  5. Heywood, K. J., Naveira Garabato, A. C., Stevens, D. P., & Muench, R. D. (2004). On the fate of the Antarctic Slope Front and the origin of the Weddell Front. Journal of Geophysical Research, 109(C6), C06021. https://doi.org/10.1029/2003jc002053
  6. Holland, D. M., & Jenkins, A. (1999). Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. Journal of Physical Oceanography, 29(8), 1787–1800. https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2
  7. Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4), 363–403. https://doi.org/10.1029/94RG01872
  8. Maderich, V., Bezhenar, R., Brovchenko, I., Bezhenar, A., Boeira Dias, F., & Uotila, P. (2022). Lagrangian pathways under the Filchner-Ronne Ice Shelf and in the Weddell Sea. Ukrainian Antarctic Journal, 20(2(25), 203–211. https://doi.org/10.33275/1727-7485.2.2022.700
  9. Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., & Zhang, H. (2008). ECCO2: High resolution global ocean and sea ice data synthesis. In American Geophysical Union Fall Meeting 2008, OS31C-1292. https://ui.adsabs.harvard.edu/abs/2008AGUFMOS31C1292M/abstract
  10. Moffat, C., & Meredith, M. (2018). Shelf–ocean exchange and hydrography west of the Antarctic Peninsula: a review. Philosophical Transactions of the Royal Society. Series A, Mathematical, Physical, and Engineering Sciences, 376(2122), 20170164. https://doi.org/10.1098/rsta.2017.0164
  11. Nissen, C., Timmermann, R., van Caspel, M., & Wekerle, C. (2024). Altered Weddell Sea warm- and dense-water pathways in response to 21st-century climate change. Ocean Science, 20(1), 85–101. https://doi.org/10.5194/os-20-85-2024
  12. Richter, O., Gwyther, D. E., Galton-Fenzi, B. K., & Naughten, K. A. (2022). The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation. Geoscientific Model Development, 15(2), 617–647. https://doi.org/10.5194/gmd-15-617-2022
  13. Sangrà, P., Gordo, C., Hernández-Arencibia, M., Marrero-Díaz, A., Rodríguez-Santana, A., Stegner, A., Martínez-Marrero, A., Pelegrí, J. L., & Pichon, T. (2011). The Bransfield current system. Deep Sea Research Part I: Oceanographic Research Papers, 58(4), 390–402. https://doi.org/10.1016/j.dsr.2011.01.011
  14. Schubert, R., Thompson, A. F., Speer, K., Schulze Chretien, L., & Bebieva, Y. (2021). The Antarctic Coastal Current in the Bellingshausen Sea. The Cryosphere, 15(9), 4179–4199. https://doi.org/10.5194/tc-15-4179-2021
  15. Tamura, T., Ohshima, K. I., Nihashi, S., & Hasumi, H. (2011). Estimation of surface heat/salt fluxes associated with sea ice growth/melt in the Southern Ocean. SOLA, 7, 17–20. https://doi.org/10.2151/sola.2011-005
  16. Thompson, A. F., Heywood, K. J., Thorpe, S. E., Renner, A. H. H., & Trasviña, A. (2009). Surface circulation at the tip of the Antarctic Peninsula from drifters. Journal of Physical Oceanography, 39(1), 3–26. https://doi.org/10.1175/2008JPO3995.1
  17. Thompson, A. F., Speer, K. G., & Schulze Chretien, L. M. (2020). Genesis of the Antarctic Slope Current in West Antarctica. Geophysical Research Letters, 47(16), e2020GL087802. https://doi.org/10.1029/2020GL087802
  18. Thompson, A. F., Stewart, A. L, Spence, P., & Heywood, K. J. (2018). The Antarctic Slope Current in a changing climate. Reviews of Geophysics, 56, 741–770. https://doi.org/10.1029/2018RG000624
  19. van Caspel, M., Hellmer, H. H., & Mata, M. M. (2018). On the ventilation of Bransfield Strait deep basins. Deep Sea Research Part II: Topical Studies in Oceanography, 149, 25–30. https://doi.org/10.1016/j.dsr2.2017.09.006
  20. van Sebille, E., Spence, P., Mazloff, M. R., England, M. H., Rintoul, S. R., & Saenko, O. A. (2013). Abyssal connections of Antarctic bottom water in a Southern Ocean state estimate. Geophysical Research Letters, 40(10), 2177–2182. https://doi.org/10.1002/grl.50483
  21. Zhou, M., Niiler, P. P., & Hu, J.-H. (2002). Surface currents in the Bransfield and Gerlache Straits, Antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 49(2), 267–280. http://dx.doi.org/10.1016/s0967-0637(01)00062-0