Intron length polymorphism of β-tubulin genes in Colobanthus quitensis across the Argentine Islands-Kyiv Peninsula region
- Antarctic pearlwort,
- Antarctic Peninsula,
- genetic polymorphism,
- natural populations
Copyright (c) 2024 Ukrainian Antarctic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
This work analyses intron length polymorphism of β-tubulin genes in populations of Antarctic pearlwort (Colobanthus quitensis) from the relatively compact region of the Argentine Islands-Kyiv Peninsula (the maritime Antarctic). Analysis of the length polymorphism of the two introns of β-tubulin genes in natural populations of C. quitensis revealed a generally low level of genetic polymorphism. Investigation of the first intron length polymorphism revealed two groups of populations. The population of the largest of Berthelot Islands has representatives of both groups. The second intron length polymorphism of β-tubulin genes identified individual genotypes in 7 of the 11 studied populations of C. quitensis. We speculate that this might be due to the spread of plants from different locations or a combination of changes under different environmental conditions.
References
- Acuna-Rodrıguez, I. S., Oses, R., Cortes-Vasquez, J., Torres-Dıaz, C., & Molina-Montenegro, M. A. (2014). Genetic diversity of Colobanthus quitensis across the Drake Passage. Plant Genetic Resources, 12(1), 147–150. https://doi.org/10.1017/S1479262113000270
- Alban, D. M., Biersma, E. M., Kadereit, J. W., & Dillenberger, M. S. (2022). Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Systematics and Evolution, 308, 1. https://doi.org/10.1007/s00606-021-01793-w
- Andreev, I. O., Parnikoza, I. Yu., Konvalyuk, I. I., Metcheva, R., Kozeretska, I. A., & Kunakh, V. A. (2022). Genetic divergence of Deschampsia antarctica (Poaceae) population groups in the maritime Antarctic. Biological Journal of the Linnean Society, 135, 223–234. https://doi.org/10.1093/biolinnean/blab141
- Androsiuk, P., Chwedorzewska, K., Szandar, K., & Giełwanowska, I. (2015). Genetic variability of Colobanthus quitensis from King George Island (Antarctica). Polish Polar Research, 36, 281–295. https://doi.org/10.1515/popore-2015-0017
- Biersma, E. M., Torres-Díaz, C., Molina-Montenegro, M. A., Newsham, K. K., Vidal, M. A., Collado, G. A., Acuña-Rodríguez, I. S., Ballesteros, G. I., Figueroa, C. C., Goodall-Copestake, W. P., Leppe, M. A., Cuba-Díaz, M., Valladares, M. A., Pertierra, L. R., & Convey, P. (2020). Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. Journal of Biogeography, 47(8), 1663–1673. https://doi.org/10.1111/jbi.13843
- Braglia, L., Gavazzi, F., Gianì, S., Morello, L., & Breviario, D. (2023). Tubulin-Based Polymorphism (TBP) in Plant Genotyping. In Y. Shavrukov (Ed.), Plant Genotyping Methods and Protocols. Methods in Molecular Biology (vol. 2638). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_28
- Braglia, L., Lauria, M., Appenroth, K. J., Bog, M., Breviario, D., Grasso, A., Gavazzi, F., & Morello, L. (2021). Duckweed species genotyping and interspecific hybrid discovery by Tubulin-Based Polymorphism finger-printing. Frontiers in Plant Science, 12, 625670. https://doi.org/10.3389/fpls.2021.625670
- Braglia, L., Manca, A., Mastromauro, F., & Breviario, D. (2010). cTBP: A successful intron length polymorphism (ILP)–based genotyping method targeted to well defined experimental needs. Diversity, 2, 572–585. https://doi.org/10.3390/d2040572
- Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P., & Giani, S. (2007). High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Molecular Breeding, 20, 249–259. https://doi.org/10.1007/s11032-007-9087-9
- Convey, P., Gibson, J. A. E., Hillenbrand, C. D., Hodgson, D. A., Pugh, P. J. A., Smellie, J. L., & Stevens, M. I. (2008). Antarctic terrestrial life – challenging the history of the frozen continent? Biological Reviews, 83, 103–117. https://doi.org/10.1111/j.1469-185X.2008.00034.x
- Cuba-Dıaz, M., Klagges, M., Fuentes-Lillo, E., Cordero, C., Acuna, D., Opazo, G., & Troncoso-Castro, J. M. (2017). Phenotypic variability and genetic differentiation in continental and island populations of Colobanthus quitensis (Caryophyllaceae: Antarctic pearlwort). Polar Biology, 40, 2397–2409. https://doi.org/10.1007/s00300-017-2152-x
- Eckert, C., Samis, K., & Lougheed, S. (2008). Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology, 17, 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x
- Fasanella, M., Premoli, A. C., Urdampilleta, J. D., González, M. L., & Chiapella, J. O. (2017). How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae). Botanical Journal of the Linnean Society, 185, 511–524. https://doi.org/10.1093/botlinnean/box070
- Gianoli, E., Inostroza, P., Zuñiga-Feest, A., Reyes-Diaz, M., Cavieres, L. A., Bravo, L. A., & Corcuera, L. J. (2004). Ecotypic differentiation in morphology and cold resistance in population of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and Maritime Antarctica. Arctic, Antarctic and Alpine Research, 36, 484–489. https://doi.org/10.1657/1523-0430(2004)036[0484:EDIMAC]2.0.CO;2
- Gowd, T. Y. M., Deo, C., Manjunathagowda, D. C., Mahajan, V., Dutta, R., Bhutia, N. D., Singh, B., & Mounika, V. (2023). Deployment of Intron Length Polymorphic (ILP) markers in dissipating diversity of Allium species. South African Journal of Botany, 160, 157–165. https://doi.org/10.1016/j.sajb.2023.06.053
- Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192. https://doi.org/10.1093/sysbio/42.2.182
- Kang, Y., Lee, H., Kim, M. K., Shin, S. C., Park, H., & Lee, J. (2016). The complete chloroplast genome of Antarctic pearlwort, Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae). Mitochondrial DNA Part A, 27, 4677–4678. https://doi.org/10.3109/19401736.2015.1106498
- Koc, J., Androsiuk, P., Chwedorzewska, K. J., Cuba-Diaz, M., Górecki, R., & Giełwanowska, I. (2018). Range-wide pattern of genetic variation in Colobanthus quitensis. Polar Biology, 41, 2467–2479. https://doi.org/10.1007/s00300-018-2383-5
- Lee, D. W., & Postle, R. L. (1975). Isozyme variation in Colobanthus quitensis (Kunth) Bartl.: Methods and preliminary analysis. British Antarctic Survey Bulletin, 41/42, 133–137.
- Lykholat, Y. V., Rabokon, A. M., Blume, R. Y., Khromykh, N. O., Didur, O. O., Sakharova, V. H., Kabar, A. M., Pirko, Ya. V., & Blume, Ya. B. (2022). Characterization of β-tubulin genes in Prunus persica and Prunus dulcis for fingerprinting of their interspecific hybrids. Cytology and Genetics, 56, 481–493. https://doi.org/10.3103/S009545272206007X
- Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.
- Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269
- Parnikoza, I., Kozeretska, I., & Kunakh, V. (2011). Vascular plants of the Maritime Antarctic: origin and adaptation. American Journal of Plant Sciences, 2, 381–395. https://doi.org/10.4236/ajps.2011.23044
- Pascual-Díaz, J. P., Serçe, S., Hradecká, I., Vanek, M., Özdemir, B. S., Sultana, N., Vural, M., Vitales, D., & Garcia, S. (2020). Genome size constancy in Antarctic populations of Colobanthus quitensis and Deschampsia antarctica. Polar Biology, 43, 1407–1413. https://doi.org/10.1007/s00300-020-02699-y
- Pavlicek, A., Hrda, S., & Flegr, J. (1999). FreeTree – Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biologica (Praha), 45, 97–99.
- Rabokon, A. M., Pirko, Y. V., Demkovych, A. Ye., Andreev, I. O., Parnikoza, I. Yu., Kozeretska, I. A., Yu, Z., Kunakh, V. A., & Blume, Y. B. (2019). Intron length polymorphism of β-tubulin genes in Deschampsia antarctica E. Desv. across the western coast of the Antarctic Peninsula. Polar Science, 19, 1541–154. https://doi.org/10.1016/j.polar.2018.11.001
- Rabokon, A., Postovoitovà, A., Bilonozhko, Yu., Kalafat, L., Pavlovska, M., Prekrasna, Ie., Parnikoza, I., Kozeretska, I., Pirko, Ya., & Blume, Ya. (2020). Assessment of Colobanthus quitensis genetic polymorphism from the Argentine Islands region (maritime Antarctic) by actin, α- and γ-tubulin gene intron analysis. Ukrainian Antarctic Journal, (1), 93–101. https://doi.org/10.33275/1727-7485.1.2020.382
- Sagarin, R. D., & Gaines, S. D. (2002). The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters, 5(1), 137–147.
- Smith, R. I. L., & Corner, R. W. M. (1973). Vegetation of the Arthur Harbour-Argentine Islands region of the Antarctic Peninsula. British Antarctic Survey Bulletin, 33/34, 89–122.
- Sneath, P. H. A., & Sokal, R. R. (1973). Numerical Taxonomy. The principles and practice of numerical classification. W. H. Freeman and Company.
- Van de Wouw, M., van Dijk, P., & Huiskes, A. H. L. (2008). Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). Journal of Biogeography, 35, 365–376.
- Yevchun, H., Fedchuk, A., Drohushevska, I., Pnyovska, O., Chernyshenko, M., & Parnikoza, I. (2021). The toponymy of the Argentine Islands area, the Kyiv Peninsula (West Antarctica). Ukrainian Antarctic Journal, (2), 127–157. https://doi.org/10.33275/1727-7485.2.2021.683