Український антарктичний журнал

Том 22 № 1(28) (2024): Український антарктичний журнал
Articles

Сучасні тенденції у зональному розподілі та асиметрії озону в Антарктиці за даними супутникових вимірювань

Жуйсін Юі
Коледж фізики, Міжнародний центр науки майбутнього, Університет Цзілінь, Чанчунь, 130012, КНР
Володимир Решетник
Київський національний університет імені Тараса Шевченка, Київ, 01601, Україна
Асен Грицай
Київський національний університет імені Тараса Шевченка, Київ, 01601, Україна
Геннадій Міліневський
Коледж фізики, Міжнародний центр науки майбутнього, Університет Цзілінь, Чанчунь, 130012, КНР; Державна установа Національний антарктичний науковий центр, Київ, 01601, Україна; Головна астрономічна обсерваторія НАН України, Київ, 03143, Україна
Олександр Євтушевський
Київський національний університет імені Тараса Шевченка, Київ, 01601, Україна
Андрій Клекочук
Коледж фізики, хімії та наук про Землю, Університет Аделаїди, Аделаіда, 5005, Австралія; Австралійський антарктичний відділ, Кінгстон, 7050, Тасманія, Австралія
Юі Ші
Коледж фізики, Міжнародний центр науки майбутнього, Університет Цзілінь, Чанчунь, 130012, КНР
Опубліковано September 7, 2024
Ключові слова
  • озонова діра,
  • планетарна хвиля,
  • полярний вихор,
  • раптове стратосферне потепління,
  • тренд вмісту озону
Як цитувати
Юі , Ж., Решетник , В., Грицай , А., Міліневський , Г., Євтушевський , О., Клекочук , А., & Ші , Ю. (2024). Сучасні тенденції у зональному розподілі та асиметрії озону в Антарктиці за даними супутникових вимірювань. Український антарктичний журнал, 22(1(28), 24-39. https://doi.org/10.33275/1727-7485.1.2024.725

Анотація

Утворення антарктичної озонової діри наприкінці зими та навесні (вересень–листопад) є найпомітнішим явищем у південній полярній стратосфері. Озонова діра з’являється кожного сезону з початку 1980-х років у стратосферному полярному вихорі, який перешкоджає змішуванню його повітряних мас із повітрям середніх широт, впливаючи на розподіл малих складових атмосфери, включаючи озон. Озонова діра значно залежить від динамічних факторів, в основному від поширення планетарних хвиль з тропосфери до стратосфери. Наше дослідження має на меті визначити загальний довготний розподіл озону для південної весни та окремих місяців (вересень, жовтень і листопад), і детально розглянути спостережувані тенденції. Проведено аналіз та отримано тенденції динаміки загального вмісту озону під час розвитку озонової діри. Усереднення за часом довготного розподілу загального вмісту озону було виконано з використанням тримісячних середніх значень озону під час південної весни. Ця процедура усуває флуктуації та викиди за рахунок біжучих планетарних хвиль. Діапазон широт 55°–80° пд. ш. був проаналізований, щоб охарактеризувати загальний розподіл озону на краю озонової діри та у внутрішніх її областях. Розподіл за окремі місяці (вересень, жовтень і листопад) розглядався для детального опису спостережуваних тенденцій. Аналіз отриманих результатів вказує на близький до лінійного від’ємний тренд загального вмісту озону під час інтенсифікації озонової діри з початку 1980-х до середини 1990-х років. Ця тенденція була визначена на всіх проаналізованих широтах, причому загальний вміст озону зменшився на ~150 одиниць Добсона протягом 15 років в області зонального довготного мінімуму. Проте аналіз тенденцій показує, що відновлення озонового шару під час південної весни в останні роки не спостерігається, враховуючи низькі значення вмісту озону в 2020–2023 роках. Після періоду зменшення вмісту озону чітка тенденція не простежується, але жовтневі значення зонального максимуму дещо знизилися в останнє десятиліття. Положення зонального мінімуму рухалось на схід під час зниження загального вмісту озону, але у подальшому відбувались значні міжрічні варіації довготного положення області як максимального, так і області мінімального вмісту озону без будь-якої помітної довгострокової тенденції.

Посилання

  1. Alexander, S. P., & Shepherd, M. G. (2010). Planetary wave activity in the polar lower stratosphere. Atmospheric Chemistry and Physics, 10, 707–718. https://doi.org/10.5194/acp-10-707-2010
  2. Ansmann, A., Ohneiser, K., Chudnovsky, A., Knopf, D. A., Eloranta, E. W., Villanueva, D., Seifert, P., Radenz, M., Barja, B., Zamorano, F., Jimenez, C., Engelmann, R., Baars, H., Griesche, H., Hofer, J., Althausen, D., & Wandinger, U. (2022). Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke. Atmospheric Chemistry and Physics, 22, 11701–11726. https://doi.org/10.5194/acp-22-11701-2022
  3. Asikainen, T., Salminen, A., Maliniemi, V., & Mursula, K. (2020). Influence of enhanced planetary wave activity on the polar vortex enhancement related to energetic electron precipitation. Journal of Geophysical Research: Atmospheres, 125, e2019JD032137. https://doi.org/10.1029/2019JD032137
  4. Blachut, C., & Balasuriya, S. (2024). Convective modes reveal the incoherence of the southern polar vortex. Scientific Reports, 14, 966. https://doi.org/10.1038/s41598-023-50411-x
  5. Butler, A. H., & Domeisen, D. I. V. (2021). The wave geometry of final stratospheric warming events. Weather and Climate Dynamics, 2, 453–474. https://doi.org/10.5194/wcd-2-453-2021
  6. Chiodo, G., & Polvani, L. M. (2019). The response of the ozone layer to quadrupled CO2 concentrations: Implications for Climate. Journal of Climate, 32, 7629–7642. https://doi.org/10.1175/JCLI-D-19-0086.1
  7. Coldewey-Egbers, M., Loyola, D. G., Lerot, C., & van Roozendael, M. (2022). Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record. Atmospheric Chemistry and Physics, 22, 6861–6878. https://doi.org/10.5194/acp-22-6861-2022
  8. de Laat, A., van Geffen, J., Stammes, P, van der A, R., Eskes, H., & Veefkind, P. (2023). The Antarctic stratospheric Nitrogen Hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed in Sentinel-5p TROPOMI data. EGUsphere. https://doi.org/10.5194/egusphere-2023-2384
  9. de Laat, A. T. J., & van Weele, M. (2011). The 2010 Antarctic ozone hole: observed reduction in ozone destruction by minor sudden stratospheric warmings. Scientific Reports, 1, 38. https://doi.org/10.1038/srep00038
  10. Fioletov, V., Zhao, X., Abboud, I., Brohart, M., Ogyu, A., Sit, R., Lee, S. C., Petropavlovskikh, I., Miyagawa, K., Johnson, B. J., Cullis, P., Booth, J., McConville, G., & McElroy, C. T. (2023). Total ozone variability and trends over the South Pole during the wintertime. Atmospheric Chemistry and Physics, 23, 12731–12751. https://doi.org/10.5194/acp-23-12731-2023
  11. Grytsai, A., Grytsai, Z., Evtushevsky, A., & Milinevsky, G. (2005a). Interannual variability of planetary waves in the ozone layer at 65°S. International Journal of Remote Sensing, 26(16), 3377–3387. https://doi.org/10.1080/01431160500076350
  12. Grytsai, A., Grytsai, Z., Evtushevsky, A., Milinevsky, G., & Leonov, N. (2005b). Zonal wave numbers 1–5 in planetary waves from the TOMS total ozone at 65°S. Annales Geophysicae, 23(5), 1565–1573. https://doi.org/10.5194/angeo-23-1565-2005
  13. Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17, 1741–1758. https://doi.org/10.5194/acp-17-1741-2017
  14. Grytsai, A., Milinevsky, G., Andrienko, Y., Klekociuk, A., Rapoport, Y., & Ivaniha, O. (2022). Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data. Ukrainian Antarctic Journal, 20(1), 31–43. https://doi.org/10.33275/1727-7485.1.2022.687
  15. Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007). Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25, 361–374. https://doi.org/10.5194/angeo-25-361-2007
  16. Herman, J., Ziemke, J., & McPeters, R. (2023). Total column ozone trends from the NASA Merged Ozone time series 1979 to 2021 showing latitude-dependent ozone recovery dates (1994 to 1998). Atmospheric Measurement Techniques, 16, 4693–4707. https://doi.org/10.5194/amt-16-4693-2023
  17. Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., & Kyrölä, E. (2012). Ozone zonal asymmetry and planetary wave characterization during Antarctic spring. Atmospheric Chemistry and Physics, 12, 2603–2614. https://doi.org/10.5194/acp-12-2603-2012
  18. Ivaniha, O. (2020). Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, 1, 41–55. https://doi.org/10.33275/1727-7485.1.2020.378
  19. Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., & Neely III, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophysical Research Letters, 44, 2556–2561. https://doi.org/10.1002/2016GL071925
  20. Jucker, M., Reichler, T., & Waugh, D. W. (2021). How frequent are Antarctic sudden stratospheric warmings in present and future climate? Geophysical Research Letters, 48, e2021GL093215. https://doi.org/10.1029/2021GL093215
  21. Kessenich, H. E., Seppälä, A., & Rodger, C. J. (2023). Potential drivers of the recent large Antarctic ozone holes. Nature Communications, 14, 7259. https://doi.org/10.1038/s41467-023-42637-0
  22. Krzyścin, J., & Czerwińska, A. (2024). Signs of slowing recovery of Antarctic ozone hole in recent late winter–early spring seasons (2020–2023). Atmosphere, 15, 80. https://doi.org/10.3390/atmos15010080
  23. Li, J., Zhou, S., Guo, D., Hu, D., Yao, Y., & Wu, M. (2024). The variation characteristics of stratospheric circulation under the interdecadal variability of Antarctic total column ozone in early austral spring. Remote Sensing, 16, 619. https://doi.org/10.3390/rs16040619
  24. Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41, 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
  25. Mukhtarov, P., Miloshev, N., & Bojilova, R. (2023). Stratospheric warming events in the period January–March 2023 and their impact on stratospheric ozone in the Northern Hemisphere. Atmosphere, 14, 1762. https://doi.org/10.3390/atmos14121762
  26. Rao, J., Garfinkel, C. I., White, I. P., & Schwartz, C. (2020). The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S Models. Journal of Geophysical Research: Atmospheres, 125(14), e2020JD032723. https://doi.org/10.1029/2020JD032723
  27. Rhodes, C. T., Limpasuvan, V., & Orsolini, Y. (2023). The composite response of traveling planetary waves in the middle atmosphere surrounding sudden stratospheric warmings through an overreflection perspective. Journal of Atmospheric Sciences, 80, 2635–2652. https://doi.org/10.1175/JAS-D-22-0266.1
  28. Safieddine, S., Bouillon, M., Paracho, A.-C., Jumelet, J., Tencé, F., Pazmino, A., Goutail, F., Wespes, C., Bekki, S., Boynard, A., Hadji-Lazaro, J., Coheur, P.-F., Hurtmans, D., & Clerbaux, C. (2020). Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophysical Research Letters, 47(14), e2020GL087810. https://doi.org/10.1029/2020GL087810
  29. Shen, X., Wang, L., Osprey, S., Hardiman, S. C., Scaife, A. A., & Ma, J. (2022). The life cycle and variability of Antarctic weak polar vortex events. Journal of Climate, 35, 2075–2092. https://doi.org/10.1175/JCLI-D-21-0500.1
  30. Siddaway, J., Klekociuk, A., Alexander, S. P., Grytsai, A., Milinevsky, G., Dargaville, R., Ivaniha, O., & Evtushevsky, O. (2020). Assessment of the zonal asymmetry trend in Antarctic total ozone column using TOMS measurements and CCMVal-2 models. Ukrainian Antarctic Journal, 2, 50–58. https://doi.org/10.33275/1727-7485.2.2020.652
  31. Solomon, S. (1988). The mystery of the Antarctic Ozone “Hole”. Reviews of Geophysics, 26(1), 131–148. https://doi.org/10.1029/RG026i001p00131
  32. Stolarski, R. S. (1988). The Antarctic ozone hole. Scientific American, 258(1), 30–37. https://doi.org/10.1038/scientificamerican0188-30
  33. Varotsos, C. (2002). The southern hemisphere ozone hole split in 2002. Environmental Science and Pollution Research, 9, 375–376. https://doi.org/10.1007/BF02987584
  34. Varotsos, C. A., Cracknell, A. P., & Tzanis, C. (2012). The exceptional ozone depletion over the Arctic in January–March 2011. Remote Sensing Letters, 3(4), 343–352. https://doi.org/10.1080/01431161.2011.597792
  35. Varotsos, C. A., & Tzanis, C. (2012). A new tool for the study of the ozone hole dynamics over Antarctica. Atmospheric Environment, 47, 428–434. https://doi.org/10.1016/j.atmosenv.2011.10.038
  36. Varotsos, C. A., & Zellner, R. (2010). A new modeling tool for the diffusion of gases in ice or amorphous binary mixture in the polar stratosphere and the upper troposphere. Atmospheric Chemistry and Physics, 10, 3099-3105. https://doi.org/10.5194/acp-10-3099-2010
  37. Vincent, R. A., Kovalam, S., Reid, I. M., Murphy, D. J., & Klekociuk, A. (2022). Southern hemisphere stratospheric warmings and coupling to the mesosphere-lower thermosphere. Journal of Geophysical Research: Atmospheres, 127(15), e2022JD036558. https://doi.org/10.1029/2022JD036558
  38. Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., Garcia, R., Toon, O. B., Park, M., Kinnison, D., Zhang, J., Bourassa, A., Rieger, L., Warnock, T., & Li, J. (2023). Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption. Journal of Geophysical Research: Atmospheres, 128, e2023JD039480. https://doi.org/10.1029/2023JD039480
  39. Wang, Y., Shulga, V., Milinevsky, G., Patoka, A., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Shulga, D., Myshenko, V., & Antyufeyev, O. (2019). Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmospheric Chemistry and Physics, 19, 10303–10317. https://doi.org/10.5194/acp-19-10303-2019
  40. Western, L. M., Vollmer, M. K., Krummel, P. B., Adcock, K. E., Crotwell, M., Fraser, P. J., Harth, C. M., Langenfelds, R. L., Montzka, S. A., Mühle, J., Oram, D. E., Reimann, S., Rigby, M., Vimont, I., Weiss, R. F., Young, D., & Laube, J. C. (2023). Global increase of ozone-depleting chlorofluorocarbons from 2010 to 2020. Nature Geoscience, 16(4), 309–313. https://doi.org/10.1038/s41561-023-01147-w
  41. White, I. P., Garfinkel, C. I., Cohen, J., Jucker, M., & Rao, J. (2021). The impact of split and displacement sudden stratospheric warmings on the troposphere. Journal of Geophysical Research: Atmospheres, 126, e2020JD033989. https://doi.org/10.1029/2020JD033989
  42. WMO. (1978). Commission for Atmospheric Sciences, Abridged final report of the seventh session. Manila, 27 February – 10 March (WMO-No. 509). Commission for Atmospheric Sciences. https://library.wmo.int/records/item/35601-commission-for-atmospheric-sciences?offset=1