Ukrainian Antarctic Journal

No 12 (2013): Ukrainian Antarctic Journal

Response of photosynthetic apparatus of two Deschampsia species with different distribution areas on abiotic stress

N. Yu. Taran
Research and Training Center “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv
V. Storozhenko
Research and Training Center “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv
A. Okanenko
Research and Training Center “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv
L. M. Batsmanova
Research and Training Center “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv
N. B. Svietlova
Research and Training Center “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv
Published December 15, 2013
  • Deschampsia,
  • UV-B radiation,
  • carotenoids,
  • glycolipids
How to Cite
Taran, N. Y., Storozhenko, V., Okanenko, A., Batsmanova, L. M., & Svietlova, N. B. (2013). Response of photosynthetic apparatus of two Deschampsia species with different distribution areas on abiotic stress. Ukrainian Antarctic Journal, (12), 282-293.


Deschampsia antarctica (endemic of Antarctic region) and Deschampsia caespitosa (inhabitant of moderate climate regions) are two plant species of Poaceae. The influences of UV-B radiation and H2O2 on photosynthetic apparatus of these plants were studied. UV-B radiation induced degradation of chlorophyll a and β-carotene in leaves of plants of both Deschampsia species. The content of galactolipids in leaves of both species under conditions of UV-B radiation varied significantly, but comparatively stable sulfoquinovosyldiacylglycerol (SQDG) content was observed.  UV-B radiation caused slight decrease of QA pool oxidation level in D. antarctica leaves and increase of this index in leaves of D. caespitosa plants. Also UV-B action induced slight decrease of non-photochemical quenching in D. caespitosa leaves, but PS II quantum efficiency of charge separation φp was unchanged. The ratio between the monomeric and oligomeric forms of LHC II (LHCP1/LHCP3) in photosynthetic apparatus of leaves of irradiated plants increased, especially significantly in leaves of D. caespitosa plants. H2O2 treatment cause insignificant decrease of  SOD activity of both species. Pigment composition was characterized by increase of carotenoids content in leaves of D.antarctica plants and chlorophyll a content in both species. Glycolipid content was stable and SQDG content slightly increased in leaves of D.antarctica plants after H2O2 treatment. 


  1. Anderson, J.M. (1980). P-700 content and polypeptide profile of chlorophyll-protein complexes of spinach and barley thylakoids. Biochim. et Biophys. Acta, 591(1), 113–126.
  2. Arnon, D. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Plant Physiol., 24(1), 1-15.
  3. Barber, J. (1994). Molecular basis of the vulnerability of Photosystem II to damage by light. Aust J Plant Physiol., 22(2), 201–208.
  4. Barber, J., & Gounaris, K. (1986). What role does sulpholipid play within the thylakoid membrane? Photosynth Res., 9(1–2), 239–249.
  5. Bugos, R.C., Hieber, A.D., & Yamamoto, H.Y. (1998). Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. The Journal оf Biol.Chem., 273(25), 15321–15324.
  6. Bugos, R.C., & Yamamoto, H.Y. (1996). Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proceedings of the National Academy of Science of USA, 93(13), 6320–6325.
  7. De Vitry, C., Ouyang, Y., Finazzi, G., Wollman, F.-A., & Toivo, K. (2004). The chloroplast rieske iron-sulfur protein at the crossroad of electron transport and signal transduction.The Journal of Biol.Chem., 279(43), 44621–44627.
  8. Edge, R., McGarvey, D.J., & Truscott, T.G. (1997). The carotenoids as antioxidants. J. Photochem. Photobiol., 41(3), 189–200.
  9. Finazzi, G., Johnson, G.N., Osto, L.D., Joliot, P., Wollman, F.-A., & Bassi, R. (2004). A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. PNAS, 101(33), 12375–12380.
  10. Foyer, C.H., Lelandais, M., & Kunert, K.J. (1994). Photooxidative stress in plants. Physiol. Plant, 92(4), 696–717.
  11. Gasser, A., Raddatz, S., Radunz, A., & Schmid, G.H. (1999). Comparative immunological and chemical analysis of lipids and carotenoids of the D1-peptide and of the light-harvesting-complex of photosystem II of Nicotiana tabacum. Z. Naturforsch, 54(3-4), 199–208.
  12. González-Rodríguez, A.M., Tausz, M., Wonisch, A., Jiménez, M.S., Grill, D., & Morales, D. (2001). The significance of xanthophylls and tocopherols in photo-oxidative stress and photoprotection of three Canarian laurel forest tree species on a high radiation day. Journal of Plant Physiol., 158(12), 1547–1554.
  13. Hager, A., & Holocher, K. (1994). Localisation of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of this mobility by a (light-dependent) pH decrease. Planta, 192(4), 581–589.
  14. Havaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213(6), 953–966.
  15. Hideg, É., Barta, C., Kálai, T., Vass, I., Hideg, K., & Asada, K. (2002). Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant and Cell Physiol., 43(10), 1154–1164.
  16. Hincha, D.K. (2003). Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. Biochim. Biophys. Acta, 1611(1–2), 180–186.
  17. Joyard, J., Mareshal, E., Miege, C. (1998). Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler, P.A., Murata, N. (Eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis, Kluwer Acad. Publ., Dordrecht.
  18. Kean, E.L. (1968.) Rapid sensitive spectrophotometric method for quantitative determination of sulfatides. Journal of Lipid Research, 9(3), 314–327.
  19. Kenrick, J., & Bishop, D. (1986). The fatty acid composition of phosphatidylglycerol and sulfoquinovosyl diacylglycerol of higher plants in relation to chilling sensitivity. Plant Physiol., 81(4), 946–948.
  20. Latowski, D., Åkerlund, H.-E., & Strzałka, K. (2004). Violaxanthinde-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochem., 43(15), 417–420.
  21. Latowski, D., Kostecka-Gugala, A., & Strzalka, K. (2003). Effect of the temperature on violaxanthin de-epoxidation: Comparison of the in vivo and model systems. Russian J of Plant Physiol., 50(2), 173–177.
  22. Lee, A.G. (2000). Membrane lipids: it’s only a phase. Current Biology, 10(10), 377–379.
  23. Lim, B.P., Nagao, A., Terao, J., Tanaka, K., Suzuki, T., & Takama, K. (1992). Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta, 1126(2), 178–184.
  24. Livn, A., & Packer, E. (1969). Partial resolution of the enzymes catalyzing photophosphorylation. V. Interaction of coupling factor I from chloroplasts with ribonucleic acid and lipids. J. of Biol. Chem., 244(5), 1332–1338.
  25. Madronich, S., McKenzie, R.L., Björn, L.O., & Caldwell, M.M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol., 46(1), 5–19.
  26. Menikh, A., & Fragata, M. (1993). Fourier transform infrared spectroscopic study of ion binding and intramolecular interactions in the polar head of digalactosyldiacylglycerol. Eur. Biophys. J., 22(4), 249–258.
  27. Merzlyak, M.N. (1978). Densimetric determination of carotenoids in plants in thin layers of “Silufol” plates. Nauchnye doclady Vyshey shkoly. Biologicheskie nauki, 1, 134–138.
  28. Middleton, E.M., & Teramura, A.H. (1993). The Role of Flavonol Glycosides and Carotenoids in Protecting Soybean from Ultraviolet-B Damage. Plant Physiol., 103(3), 741–752.
  29. Müller-Moulé, P., Havaux, M., & Niyogi, K.K. (2003). Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiology, 133(2), 748–760.
  30. Murata, N., & Siegenthaler, P.A. (1998). Lipids in photosynthesis: an overview. In: P.A. Siegenthaler, N. Murata (Eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis. KluwerAcad. Publ., Dordrecht.
  31. Musil, C.F., Chimphango, S.B.M., & Dakora, F.D. (2002). Effects of elevated ultraviolet-B radiation on native and cultivated plants of Southern Africa. Annals of Bot., 90(1), 127–137.
  32. Noctor, G., & Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 49, 249–279.
  33. Palozza, P., & Krinsky, N.L.(1992). Antioxidant effects of carotenoids in vivoand in vitro: an overview. Methods in Enzymoiogy, 213, 403–420.
  34. Perez-Torres, E., García, A., Dinamarca, J., Alberdi, M., Gutiérrez, A., Gidekel, M., Ivanov, A.G., Huner, N.P.A., Corcuera, L.J., & Bravo, L.A. (2004). The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 31(7), 731–741.
  35. Pick, U., Gounaris, K., Weiss, M., & Barber, J. (1985). Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim Biophys Acta, 808(3), 415–420.
  36. Rockholm, D.C., & Yamamoto, H.Y. (1996). Violaxanthin deepoxidase. Purification of a 43-Kilodalton Lumenal Protein from Lettuce by Lipid-Affinity Precipitation with Monogalactosyl-diacylglyceride.Plant Physiol., 110(2), 697–703.
  37. Ruban, A.V., Philip, D., Young, A.J., & Horton, P. (1997). Carotenoid dependent oligomerisation of the major chlorophyll a/blight-harvesting complex of Photosystem II of plants. Biochem., 36(6), 7855–7859.
  38. Sakaki, T. (1998). Responses of plant metabolism to air pollution and global change. In: L.J., de Kok, I. Stulen (Eds.), Backhuys Publishers. The Netherlands.
  39. Sakaki, T., Ohnishi, J., Kondo, N., & Yamada, M. (1985). Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant and Cell Physiol., 26(2), 253–262.
  40. Sakaki, T., Saitol, K., Kawaguchi, A., Kondo, N., & Yamada, M. (1990). Conversion of monogalactosyl-diacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol., 94(2), 766–772.
  41. Sakaki, T., Tanaka, K., & Yamada, M. (1994). General metabolic changes in leaf lipids in response to ozone. Plant and Cell Physiol., 35(1), 53–62.
  42. Siefermann, D., & Yamamoto, H.Y. (1975). Light-induced deepoxidation of violaxanthin in lettuce chloroplasts. IV. The effects of electron-transport conditions on violaxanthin availability. Biochim. Biophys. Acta, 387(1), 149–158.
  43. Sielewiesiuk, J., Matula, M., Gruszecki, W.I. (1997). Photo-oxidation of chlorophyll ain digalactosyldiacyl-glycerol liposomes containing xanthophyll pigments: indication of a special photoprotective ability of zeaxanthin. Cell Mol Biol Lett., 2(1), 59–68.
  44. Spotts, R.A., Lukezic, F.L., & Lacasse, L. (1975). The effect of benzimrdazole, cholesterol, and a steroid inhibitor on leaf sterols and ozone resistance of bean. Phytopathol., 65(1), 45–49.
  45. Steel, C.C., & Keller, M. (2000). Influence of UV-B radiation on the carotenoid content of Vitis vinifera tissues. Biochemical Society Transactions, 28(6), 883–885.
  46. Telfer, A., De Las Rivas, J., & Barber, J. (1991). β-carotene within the isolated photosystem II reaction centre: photooxidation and irreversible bleaching of this chromophore by oxidised P680. Biochim Biophys. Acta, 1060(1), 106–114.
  47. Telfer, A., Dhami, S., Bishop, S.M., Phillips, D., & Barber, J. (1994). β-Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochem., 33(8), 14469–14474.
  48. Tomlinson, H., & Rich, S. (1973). Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathology, 63(7), 903–906.
  49. Trevathan, L.E., Moore, L.D., & Orcutt, D.M. (1979). Symptom expression and free sterol and fatty acid composition of flue-cured tobacco plants exposed to ozone. Phytopathol., 69(6), 582–585.
  50. UNEP. (1998). UNEP Environmental effects of ozone depletion: 1998 Assessment, 1-209.
  51. Van Kooten, O., & Snel, J.F.H. (1990). The Use of Chlorophyll Fluorescence Nomenclature in Plant Stress Physiology. Photosynth. Res., 25, 147–150.
  52. Webb, M.S., & Green, B.R. (1991). Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys. Acta, 1060(2), 133–158.
  53. Whitaker, B.D., Lee, E.H., & Rowland, R.A. (1990). EDU and ozone protection: Foliar glycerolipids and steryl lipids in snapbean exposed to O3. Physiol. Plant., 80(2), 286–293.
  54. Xiong, F.S., & Day, T.A. (2001). Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol., 125(2), 738–751.
  55. Yakovenko, G.M., & Mihno, A.I. (1971). Method of isolation and separation lipids and chloroplasts by types. Fiziol. i biochim. kult. rast., 3(6), 651–656.
  56. Yamamoto, H. (1980). High speed quantitative assey on TLC (HPTLC) plates. In: W. Bertch, R. Raser (Eds.), Instrumental HPTLC. New York.
  57. Yamamoto, H.Y., Chenchin, E.E., & Yamada, D.K. (1974). Effect of chloroplast lipids on violaxanthin de-epoxidase activity. In: Avron, M. (Ed.), Proceedings of the Third International Congress on Photosynthesis. Elsevier Scientific, Amsterdam, The Netherlands.
  58. Yamamoto, H.Y., & Higashi, R.M. (1978). Violaxanthin deepoxidase. Lipid composition and substrate specificity. Arch. Biochem. Biophys., 190(2), 514–522.
  59. Zill, L., & Harmon, E. (1962). Lipids of photosynthetic tissue. I. Salicilic acid chromatography of the lipids from whole leaves and chloroplasts. Biochem. Biophys. Acta, 57(1), 573–575.