Ukrainian Antarctic Journal

No 2 (2004): Ukrainian Antarctic Journal
Articles

Traveling planetary waves in ozone layer over Antarctic peninsula

A. V. Grytsai
Taras Shevchenko National University of Kyiv, Kyiv
Z. I. Grytsai
Taras Shevchenko National University of Kyiv, Kyiv
A. M. Evtushevsky
Taras Shevchenko National University of Kyiv, Kyiv
G. P. Milinevsky
Taras Shevchenko National University of Kyiv, Kyiv; National Antartctic Scientific Center,Kyiv
N. A. Leonov
Taras Shevchenko National University of Kyiv, Kyiv; National Antartctic Scientific Center,Kyiv
Published December 15, 2004
Keywords
  • ozone layer,
  • planetary wave,
  • Vernadsky Station,
  • TOMS
How to Cite
Grytsai, A. V., Grytsai, Z. I., Evtushevsky, A. M., Milinevsky, G. P., & Leonov, N. A. (2004). Traveling planetary waves in ozone layer over Antarctic peninsula. Ukrainian Antarctic Journal, (2), 105-110. https://doi.org/10.33275/1727-7485.2.2004.604

Abstract

Preliminary results of the analysis of the traveling planetary wave evolution in the ozone layer over the region of Antarctic Peninsula are presented. Total ozone data obtained at the Vernadsky station and TOMS satellite measurements are used. The main characteristics of the traveling waves, namely the spectral distribution, period, amplitude and velocity were considered. At the station latitude of 65.25°S the amplitude of the traveling wave number 2 becomes equal or exceeds the stationary wave number 1 amplitude in individual cases only. In average for the period 1979-2003 the relationship of amplitudes of the wave numbers 1, 2, 3, 4 and 5 is 1, 0.56, 0.29, 0.19, and 0.15. The wave periods 6-8 and 10-12 days are dominant. Velocities of 8-10 m/s are obtained.

References

  1. Dynamic Activity and Ozone Variability Indices from EP/TOMS. Dynamic Activity Index. (2004). http://wdc.dlr.de/data_products/index.html
  2. Earth Probe TOMS ozone data and images. (2004). http://toms.gsfc.nasa.gov/ftpdata.html
  3. Harvey, V.L., Pierce, R.B., Fairlie, T.D., & Hitchmann, M.H. (2002). A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res., 107(D20), 4442. doi: 10.1029/2001JD001471
  4. Lawrence, A.R., & Jarvis, M.J. (2001). Initial comparisons of planetary waves in the stratosphere, mesosphere and ionosphere over Antarctica. Geophys. Res. Let., 28(2), 203-206.
  5. Nathan, T.R., Cordero, E.C., Li, L. (1994). Ozone heating and the destabilization of traveling waves during summer. Geophys. Res. Lett., 21(14), 1531-1534.
  6. Randel, W.J. (1993). Global normal-mode Rossby waves observed in stratospheric ozone data. J. Atm. Sci., 50(3), 406-420.
  7. Roldugin, V.C., Nikulin, G.N., & Henriksen, K. (2000). Wave-like ozone movements. Phys. Chem. Earth, 25(5-6), 511-514.
  8. Weber, M., Dhomse, S., Wittrock, F. et al. (2003). Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995-2002. Geophys. Res. Lett., 30(11). doi:10.1029/2002GL016799.
  9. WMO (World Meteorological Organization). (2003). Scientific assessment of ozone depletion: 2002. Report 47. Geneva.