Ukrainian Antarctic Journal

No 2 (2021): Ukrainian Antarctic Journal
Articles

The impact of volcanic emission of halogenated compounds on the Southern Hemisphere and Antarctic environment

M. Basylevska
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
V. Bogillo
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
Published December 31, 2021
Keywords
  • halocarbons,
  • hydrogen halides,
  • free-radical chain reactions,
  • stratospheric ozone depletion,
  • volcanic emission
How to Cite
Basylevska, M., & Bogillo, V. (2021). The impact of volcanic emission of halogenated compounds on the Southern Hemisphere and Antarctic environment. Ukrainian Antarctic Journal, (2), 12-34. https://doi.org/10.33275/1727-7485.2.2021.675

Abstract

The study aims to estimate and compare the global emission for 20 halocarbons from volcanic and hydrothermal sources into the Earth’s atmosphere. It follows from the results that the contribution of volcanic emission for these species in the depletion of stratospheric ozone in the catalytic halogen cycles does not exceed 0.1%. Still, they significantly impair the level of tropospheric ozone near the volcanoes. The scheme of gas-phase free radical chain halogenation of the hydrocarbons is proposed and confirmed by thermodynamic and kinetic calculations. This explains the experimental ratios between concentrations of CH3I : CH3Br : CH3Cl and CCl4 : CHCl3 : CH2Cl2 : CH3Cl in the volcanic gases. The possible volcanic emission of halocarbons from Erebus and explosive eruptions in the Southern Hemisphere during the Holocene do not have a notable impact on their content in the Antarctic ice. However, volcanic emission of hydrogen halides (HX, X = Cl, Br or I) from powerful eruptions in the Southern Hemisphere during Holocene could deplete the stratospheric ozone substantially, causing a drastic impact of the harmful UV-B radiation on the biota of continents and ocean. We calculated the injected Equivalent Effective Stratospheric Chlorine values and estimated the column ozone percentage change, Δ%O3, for 20 known volcano eruptions in the tropical belt and Southern latitudes. The estimates lead to more than 50% depletion of stratospheric ozone after past powerful volcanic eruptions. The range is estimated for possible ozone depletion after the eruption of Deception Island’s volcano occurred near 4000 BP (from 44 to 56%), which is comparable with those from Krakatoa, Samalas, and Tambora eruptions. A similar analysis was carried out for 192 yrs series of Mt Takahe (West Antarctica) halogen-rich volcanic eruptions at 17,7 kyr, showing extensive stratospheric ozone depletion over Antarctica. Crude estimations of stratospheric ozone depletion (Δ%O3) after Ferrar Large Igneous Province eruptions (183 Ma) in Antarctica were performed, considering the whole LIP volume of basaltic lavas, and they range from 49 to 83%. Given the very low emission rate of HCl due to non-eruptive degassing of the Mt. Erebus volcano, the volcanic emission of Erebus could not be a fundamental reason for modern springtime ozone hole formation over Antarctica.

References

  1. Aarnes, I., Fristad, K., Planke, S., & Svensen, H. (2011). The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 12(10), Q10019. https://doi.org/10.1029/2011GC003636
  2. Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., McGonigle, A. J. S., & Valenza, M. (2005). Emission of bromine and iodine from Mount Etna volcano. Geochemistry, Geophysics, Geosystems, 6(8), Q08008. https://doi.org/10.1029/2005GC000965
  3. Aiuppa, A., Baker, D. R., & Webster, J. D. (2009). Halogens in volcanic systems. Chemical Geology, 263(1–4), 1–18. https://doi.org/10.1016/j.chemgeo.2008.10.005
  4. Antoniades, D., Giralt, S., Geyer, A., & Álvarez-Valero, A. M. (2018). The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Scientific Reports, 8, 17279. https://doi.org/10.1038/s41598-018-35460-x
  5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & IUPAC Subcommittee. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II — gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6, 3625–4055. https://doi.org/10.5194/acp-6-3625-2006
  6. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2007). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 7(4), 981–1191. https://doi.org/10.5194/acp-7-981-2007
  7. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Wallington, T. J. (2008). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV — gas phase reactions of organic halogen species. Atmospheric Chemistry and Physics, 8,4141–4496. https://doi.org/10.5194/acp-8-4141-2008
  8. Beerling, D. J., Harfoot, M., Lomax, B., & Pyle, J. A. (2007). The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transations of the Royal Society A, 365, 1843–1866. https://doi.org/10.1098/rsta.2007.2046
  9. Berthet, G., Jegou, F., Catoire, V., Krysztofiak, G., Renard, J.-B., Bourassa, A. E., Degenstein, D. A., Brogniez, C., Dorf, M., Kreycy, S., Pfeilsticker, K., Werner, B., Lefèvre, F., Roberts, T. J., Lurton, T., Vignelles, D., Bègue, N., Bourgeois, Q., Daugeron, D., Chartier, M., Robert, C., Gaubicher, B., & Guimbaud, C. (2017). Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations. Atmospheric Chemistry and Physics, 17, 2229–2253. https://doi.org/10.5194/acp-17-2229-2017
  10. Black, B. A., Lamarque, J.-F., Shields, C. A., & Elkins-Tanton, L. T. (2014). Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1), 67–70. https://doi.org/10.1130/G34875.1
  11. Bobrowski, N., Hönninger, G., Galle, B., & Platt, U. (2003). Detection of bromine monoxide in a volcanic plume. Nature, 423, 273–276. https://doi.org/10.1038/nature01625
  12. Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W., & Platt, U. (2007). Reactive halogen chemistry in volcanic plumes. Journal of Geophysical Research. Atmospheres, 112(D6), D06311. https://doi.org/10.1029/2006jD007206
  13. Bogillo, V. I., Bazylevska, M. S., & Borchers, R. (2003). Past and future for ozone-depleting halocarbons in Antarctic environment. In S. Barany (Ed.), Role of interfaces in environmental protection (pp. 161–168). Springer, Dordrecht.
  14. Boichu, M., Oppenheimer, C., Roberts, T. J., Tsanev, V., & Kyle, P. R. (2011). On bromine, nitrogen oxides and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica). Atmospheric Environment, 45, 3856–3866. https://doi.org/10.1016/j.atmosenv.2011.03.027
  15. Brenna, H., Kutterolf, S., & Krüger, K. (2019). Global ozone depletion and increase of UV radiation caused by preindustrial tropical volcanic eruptions. Scientific Reports, 9, 9435. https://doi.org/10.1038/s41598-019-45630-0
  16. Brenna, H., Kutterolf, S., Mills, M. J., & Krüger, K. (2020). The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate. Atmospheric Chemistry and Physics, 20, 6521–6539. https://doi.org/10.5194/acp-20-6521-2020
  17. Bureau, H., Keppler, H., & Métrich, N. (2000). Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth and Planetary Science Letters, 183(1–2), 51–60. https://doi.org/10.1016/S0012-821X(00)00258-2
  18. Butler, J. H., Battle, M., Bender, M. L., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., & Elkins, J. W. (1999). A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature, 399, 749–755. https://doi.org/10.1038/21586
  19. Cadoux, A., Scaillet, B., Bekki, S., Oppenheimer, C., & Druitt, T.H. (2015). Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Scientific Reports, 5, 12243. https://doi.org/10.1038/srep12243
  20. Carn, S. A., Clarisse, L., & Prata, A. J. (2016). Multi-decadal satellite measurements of global volcanic degassing. Journal of Volcanology and Geothermal Research, 311, 99–134. https://doi.org/10.1016/j.jvolgeores.2016.01.002
  21. Carpenter, L. J., Hopkins, J. R., Jones, C. E., Lewis, A. C., Parthipan, R., Wevill, D. J., Poissant, L., Pilote, M., & Constant, P. (2005). Abiotic source of reactive organic halogens in the Sub-Arctic atmosphere? Environmental Science and Technology, 39(22), 8812–8816. https://doi.org/10.1021/es050918w
  22. Castellano, E., Becagli, S., Hansson, M., Hutterli, M., Petit, J. R., Rampino, M. R., Severi, M., Steffensen, J. P., Traversi, R., & Udisti, R. (2005). Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. Journal of Geophysical Research. Atmospheres, 110(D6), D06114. https://doi.org/10.1029/2004JD005259
  23. Chartrand, D. J., de Grandpré, J., & McConnell, J. C. (1999). An introduction to stratospheric chemistry: Survey article. Atmosphere-Ocean, 37(4), 309–367. https://doi.org/10.1080/07055900.1999.9649631
  24. Cole-Dai, J., Mosley-Thompson, E., Wight, S. P., & Thompson, L. G. (2000). A 4100-year record of explosive volcanism from an East Antarctica ice core. Journal of Geophysical Research. Atmospheres, 105(D19), 24431– 24441. https://doi.org/10.1029/2000JD900254
  25. De Vries, M. V. W., Bingham, R. G., & Hein, A. S. (2018). A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. In M. J. Siegert, S. S. R. Jamieson, & D. A. White (Eds.), Exploration of subsurface Antarctica: uncovering past changes and modern processes (pp.231–248). Geological Society, London, Special Publications. https://doi.org/10.1144/SP461.7
  26. Etiope, G. (2004). New Directions: GEM — Geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment, 38(19), 3099–3100. https://doi.org/10.1016/j.atmosenv.2004.04.002
  27. Frische, M., Garofalo, K., Hansteen, T. H., & Borchers, R. (2006). Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochemistry, Geophysics, Geosysystems, 7(5), Q05020. https://doi.org/10.1029/2005GC001162
  28. General, S., Bobrowski, N., Pöhler, D., Weber, K., Fischer, C., & Platt, U. (2015). Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume. Journal of Volcanology and Geothermal Research, 300, 175–186. https://doi.org/10.1016/j.jvolgeores.2014.05.012
  29. Gerlach, T. M. (2004). Volcanic sources of tropospheric ozone-depleting trace gases. Geochemistry, Geophysics, Geosystems, 5(9), Q09007. https://doi.org/10.1029/2004GC000747
  30. Graf, H.-F., Feichter, J., & Langmann, B. (1997). Volcanic sulfur emission: Estimates of source strength and its contribution to the global sulfate distribution. Journal of Geophysical Research, 102(D9), 10727–10738. https://doi.org/10.1029/96JD03265
  31. Gutmann, A., Bobrowski, N., Roberts, T. J., Rüdiger, J., & Hoffmann, T. (2018). Advances in Bromine Speciation in Volcanic Plumes. Frontiers in Earth Science, 6, 213. https://doi.org/10.3389/feart.2018.00213
  32. Halmer, M. M., Schmincke, H.-U., & Graf, H.-F. (2002). The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. Journal of Volcanology and Geothermal Research, 115(3–4), 511–528. https://doi.org/10.1016/S0377-0273(01)00318-3
  33. Isidorov, V. A., Zenkevich, I. G., & Ioffe, B. V. (1990). Volatile Organic Compounds in Solfataric Gases. Journal of Atmospheric Chemistry, 10, 329–340. https://doi.org/10.1007/BF00053867
  34. Isidorov, V. A., Prilepsky, E. B., & Povarov, V. G. (1997). Geological sources of radiative and photochemically active components of the atmosphere. In P. M. Borrell, P. Borrell, & K. Kelly (Eds.), Proceedings of EUROTRAC Symposium ‘96: transport and transformation of pollutants in the troposphere, Garmisch-Partenkirchen, Germany 25th–29th, March 1996 (Vol. 2. pp. 79–85).
  35. Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., & Neely III, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophysical Research Letters, 44(5), 2556–2561. https://doi.org/10.1002/2016GL071925
  36. Jordan, A., Harnisch, J., Borchers, R., Le Guern, F., & Shinohara, H. (2000). Volcanogenic Halocarbons. Environmental Science and Technology, 34(6), 1122–1124. https://doi.org/10.1021/es990838q
  37. Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Saiz-Lopez, A., Cuevas, C. A., Fernandez, R. P., Sherwen, T., Volkamer, R., Koenig, T. K., Giroud, T., & Peter, T. (2021). Iodine chemistry in the chemistry-climate model SOCOL-AERv2-I. Geoscientific Model Development, 14, 6623–6645. https://doi.org/10.5194/gmd-14-6623-2021
  38. Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Schöler, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403, 298–301. https://doi.org/10.1038/35002055
  39. Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez, R. P., Guo, H., Hall, S. R., Kinnison, D., Nault, B. A., Ullmann, K., Jimenez, J. L., Saiz-Lopez, A., & Volkamer, R. (2020). Quantitative detection of iodine in the stratosphere. Proceeding of the National Academy of Sciences of the United States of America. 117, 1860–1866. https://doi.org/10.1073/pnas.1916828117
  40. Klobas, J. E., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G., & Salawitch, R. J. (2017). Ozone depletion following future volcanic eruptions. Geophysical Research Letters, 44, 7490–7499. https://doi.org/10.1002/2017GL073972.
  41. Kurbatov, A. V., Zielinski, G. A., Dunbar, N. W., Mayewski, P. A., Meyerson, E. A., Sneed, S. B., & Taylor, K. C. (2006). A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. Journal of Geophysical Research: Atmospheres, 111(D12), D12307. https://doi.org/10.1029/2005JD006072
  42. Kyle, P. R., Dibble, R. R., Giggenbach, W. F., & Keys, J. R. (1982). Volcanic activity associated with anorthoclase phonolite lava lake, Mount Erebus, Antarctica. In C. Craddock (Ed.), Antarctic Geoscience (pp. 735–745). University of Wisconsin Press.
  43. Lee, C., Kim, Y. J., Tanimoto, H., Bobrowski, N., Platt, U., Mori T., Yamamoto, K., & Hong, C. S. (2005). High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophysical Research Letters, 32(21), L21809. https://doi.org/10.1029/2005GL023785
  44. LeMasurier, W. E., Thomson, J. W. Baker, P. E., Kyle, P. R., Rowley, P. D., Smellie, J. L., & Verwoerd, W. J. (Eds). (1990). Volcanoes of the Antarctic Plate and Southern Oceans (Vol. 48). Washington, DC: American Geophysical Union. https://doi.org/10.1029/AR048
  45. Luo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies. CRC Press. https://doi.org/10.1201/9781420007282
  46. Lurton, T., Jégou, F., Berthet, G., Renard, J.-B., Clarisse, L., Schmidt, A., Brogniez, C., & Roberts, T. J. (2018). Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in-situ and satellite observations. Atmospheric Chemistry and Physics, 18, 3223–3247. https://doi.org/10.5194/acp-18-3223-2018
  47. Madronich, S., McKenzie, R. L., Björn, L. O., & Caldwell, M. M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46(1–3), 5–19. https://doi.org/10.1016/S1011-1344(98)00182-1
  48. Martin, R. S., Mather, T. A., & Pyle, D. M. (2006). Hightemperature mixtures of magmatic and atmospheric gases. Geochemistry, Geophysics, Geosystems, 7(4). https://doi.org/10.1029/2005GC001186
  49. Mather, T. A. (2015). Volcanoes and the environment: Lessons for understanding Earth’s past and future from studies of present-day volcanic emissions. Journal of Volcanology and Geothermal Research, 304, 160–179. https://doi.org/10.1016/j.jvolgeores.2015.08.016
  50. McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J., Fudge, T. J., Knorr, G., Graf, H.- F., Grieman, M. M., … & Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 114(38), 10035–10040. https://doi.org/10.1073/pnas.1705595114
  51. Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I., & Thornton, B. (2006). Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere. Geophysical Research Letters, 33, L19815. https://doi.org/10.1029/2006GL026959
  52. Ming, A., Winton, V. H. L., Keeble, J., Abraham, N. L., Dalvi, M. C., Griffiths, P., Caillon, N., Jones, A. E., Mulvaney, R., Savarino, J., Frey, M. M., & Yang, X. (2020). Stratospheric ozone changes from explosive tropical volcanoes: Modeling and ice core constraints. Journal of Geophysical Research: Atmospheres, 125(11), e2019JD032290. https://doi.org/10.1029/2019JD032290
  53. Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X., & Gérard, M. (2017). Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change. Journal of Geophysical Research: Solid Earth, 122(2), 738–772. https://doi.org/10.1002/2016JB013354
  54. Narcisi, B., Petit, J. R., & Chappellaz, J. (2010). A 70 ka record of explosive eruptions from the TALDICE ice core (Talos Dome, East Antarctic plateau). Journal of Quaternary Science, 25(6), 844–849. https://doi.org/10.1002/jqs.1427
  55. Narcisi, B., Petit, J. R., Delmonte, B., Batanova, V., & Savarino, J. (2019). Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, 210, 164–174. https://doi.org/10.1016/j.quascirev.2019.03.005
  56. Osipov, E. Y., Khodzher, T. V., Golobokova, L. P., Onischuk, N. A., Lipenkov, V. Y., Ekaykin, A. A., Shibaev, Y. A., & Osipova, O. P. (2014). High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica. The Cryosphere, 8, 843–851. https://doi.org/10.5194/tc-8-843-2014
  57. Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., & Ruhl, M. (2015). Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428, 267–280. https://doi.org/10.1016/j.epsl.2015.06.064
  58. Plummer, C. T., Curran, M. A. J., van Ommen, T. D., Rasmussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B., Vinther, B. M., & Mayewski, P. A. (2012). An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Climate Past, 8, 1929–1940. https://doi.org/10.5194/cp-8-1929-2012
  59. Rasmussen, R. A., Rasmussen, L. E., Khalil, M. A. K., & Dalluge, R. W. (1980). Concentration distribution of methyl chloride in the atmosphere. Journal of Geophysical Research: Oceans, 85(C12), 7350–7356. https://doi.org/10.1029/JC085iC12p07350
  60. Rasmussen, R. A., Khalil, M. A. K., Dalluge, R. W., Penkett, S. A., & Jones, B. (1982). Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens. Science, 215(4533), 665–667. https://doi.org/10.1126/science.215.4533.665
  61. Ren, J., Li, C., Hou, S., Xiao, C., Qin, D., Li, Y., & Ding, M. (2010). A 2680 year volcanic record from the DT-401 East Antarctic ice core. Journal of Geophysical Research: Atmospheres, 115, D11301. https://doi.org/10.1029/2009JD012892
  62. Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B., Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., Kondo, Y., Miller, T. M., & Ballenthin, J. O. (2006). Atmospheric chemistry of a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling. Journal of Geophysical Research: Atmospheres, 111, D20206. https://doi.org/10.1029/2005JD006872
  63. Schönhardt, A., Richter, A., Theys, N., & Burrows, J. P. (2017). Space-based observation of volcanic iodine monoxide. Atmospheric Chemistry and Physics, 17, 4857–4870. https://doi.org/10.5194/acp-17-4857-2017
  64. Schwandner, F. M., Seward, T. M., Gize, A. P., Hall, P. A., & Dietrich, V. J. (2004). Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). Journal of Geophysical Research: Atmospheres, 109(D4), D04301. https://doi.org/10.1029/2003JD003890
  65. Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., & Kipfstuhl, S. (2013). A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research: Atmospheres, 118, 1151–1169. https://doi.org/10.1029/2012JD018603
  66. Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buentgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., & Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543–549. https://doi.org/10.1038/nature14565
  67. Smellie, J. L., Panter, K. S., & Geyer, A. (2021). Introduction to volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. In J. L. Smellie, K. S. Panter, and A. Geyer (Eds.), Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up. Geological Society, London, Memoirs. https://doi.org/10.1144/M55-2020-14
  68. Staunton-Sykes, J., Aubry, T. J., Shin, Y. M., Weber, J., Marshall, L. R., Abraham, N. L., Archibald, A., & Schmidt, A. (2021). Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing. Atmospheric Chemistry and Physics, 21(11), 9009–9029. https://doi.org/10.5194/acp-21-9009-2021
  69. Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., & Rose, W. I., Jr. (1971). Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala. GSA Bulletin, 82(8), 2299–2302. https://doi.org/10.1130/0016-7606(1971)82[2299:OCIVGF]2.0.CO;2
  70. Storey, B. C., Vaughan, A. P. M., & Riley, T. R. (2013). The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1), 17–30. https://doi.org/10.1017/S175569101300011X
  71. Symonds, R. B., Poreda, R. J., Evans, W. C., Janik, C. J., & Ritchie, B. E. (2003). Mantle and crustal sources of carbon, nitrogen, and noble gases in Cascade-Rauge and Aleutian-Arc volcanic gases (Open-File Report 2003-436). US Geological Survey. https://doi.org/10.3133/ofr03436
  72. Textor, C., Graf, H. F., Herzog, M., & Oberhuber, J. M. (2003). Injection of gases into the stratosphere by explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres, 108(D19), 4606. https://doi.org/10.1029/2002JD002987
  73. Toohey, M., & Sigl, M. (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data Discussions, 9, 809–831. https://doi.org/10.5194/essd-2017-31
  74. Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A., Kartadinata, N., Robert, V., & Lavigne, F. (2016). The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Scientific Reports, 6, 34868. https://doi.org/10.1038/srep34868
  75. Wade, D. C., Vidal, C. M., Abraham, N. L., & Dhomse, S. (2020). Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proceedings of the National Academy of Sciences of USA, 117(43), 26651–26659. https://doi.org/10.1073/pnas.1919807117
  76. Wahrenberger, C. (1997). Some aspects of the chemistry of volcanic gases [Doctoral thesis, ETH Zurich]. Zurich, Switzerland. https://doi.org/10.3929/ethz-a-001852436
  77. Zreda-Gostynska, G., Kyle, P. R., Finnegan, D., & Prestbo, K. M. (1997). Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research: Solid Earth, 102(B7), 15039–15055. https://doi.org/10.1029/97JB00155
  78. Zuev, V. V., Zueva, N. E., Savelieva, E. S., & Gerasimov, V. V. (2015). The Antarctic ozone depletion caused by Erebus volcano gas emissions. Atmospheric Environment, 122, 393–399. https://doi.org/10.1016/j.atmosenv.2015.10.005