Ukrainian Antarctic journal

No 2 (2021): Ukrainian Antarctic Journal

The impact of volcanic emission of halogenated compounds on the Southern Hemisphere and Antarctic environment

M. Basylevska
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
V. Bogillo
Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
Published December 31, 2021
  • halocarbons,
  • hydrogen halides,
  • free-radical chain reactions,
  • stratospheric ozone depletion,
  • volcanic emission


The study aims to estimate and compare the global emission for 20 halocarbons from volcanic and hydrothermal sources into the Earth’s atmosphere. It follows from the results that the contribution of volcanic emission for these species in the depletion of stratospheric ozone in the catalytic halogen cycles does not exceed 0.1%. Still, they significantly impair the level of tropospheric ozone near the volcanoes. The scheme of gas-phase free radical chain halogenation of the hydrocarbons is proposed and confirmed by thermodynamic and kinetic calculations. This explains the experimental ratios between concentrations of CH3I : CH3Br : CH3Cl and CCl4 : CHCl3 : CH2Cl2 : CH3Cl in the volcanic gases. The possible volcanic emission of halocarbons from Erebus and explosive eruptions in the Southern Hemisphere during the Holocene do not have a notable impact on their content in the Antarctic ice. However, volcanic emission of hydrogen halides (HX, X = Cl, Br or I) from powerful eruptions in the Southern Hemisphere during Holocene could deplete the stratospheric ozone substantially, causing a drastic impact of the harmful UV-B radiation on the biota of continents and ocean. We calculated the injected Equivalent Effective Stratospheric Chlorine values and estimated the column ozone percentage change, Δ%O3, for 20 known volcano eruptions in the tropical belt and Southern latitudes. The estimates lead to more than 50% depletion of stratospheric ozone after past powerful volcanic eruptions. The range is estimated for possible ozone depletion after the eruption of Deception Island’s volcano occurred near 4000 BP (from 44 to 56%), which is comparable with those from Krakatoa, Samalas, and Tambora eruptions. A similar analysis was carried out for 192 yrs series of Mt Takahe (West Antarctica) halogen-rich volcanic eruptions at 17,7 kyr, showing extensive stratospheric ozone depletion over Antarctica. Crude estimations of stratospheric ozone depletion (Δ%O3) after Ferrar Large Igneous Province eruptions (183 Ma) in Antarctica were performed, considering the whole LIP volume of basaltic lavas, and they range from 49 to 83%. Given the very low emission rate of HCl due to non-eruptive degassing of the Mt. Erebus volcano, the volcanic emission of Erebus could not be a fundamental reason for modern springtime ozone hole formation over Antarctica.


  1. Aarnes, I., Fristad, K., Planke, S., & Svensen, H. (2011). The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 12(10), Q10019.
  2. Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., McGonigle, A. J. S., & Valenza, M. (2005). Emission of bromine and iodine from Mount Etna volcano. Geochemistry, Geophysics, Geosystems, 6(8), Q08008.
  3. Aiuppa, A., Baker, D. R., & Webster, J. D. (2009). Halogens in volcanic systems. Chemical Geology, 263(1–4), 1–18.
  4. Antoniades, D., Giralt, S., Geyer, A., & Álvarez-Valero, A. M. (2018). The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Scientific Reports, 8, 17279.
  5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & IUPAC Subcommittee. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II — gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6, 3625–4055.
  6. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2007). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 7(4), 981–1191.
  7. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Wallington, T. J. (2008). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV — gas phase reactions of organic halogen species. Atmospheric Chemistry and Physics, 8,4141–4496.
  8. Beerling, D. J., Harfoot, M., Lomax, B., & Pyle, J. A. (2007). The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transations of the Royal Society A, 365, 1843–1866.
  9. Berthet, G., Jegou, F., Catoire, V., Krysztofiak, G., Renard, J.-B., Bourassa, A. E., Degenstein, D. A., Brogniez, C., Dorf, M., Kreycy, S., Pfeilsticker, K., Werner, B., Lefèvre, F., Roberts, T. J., Lurton, T., Vignelles, D., Bègue, N., Bourgeois, Q., Daugeron, D., Chartier, M., Robert, C., Gaubicher, B., & Guimbaud, C. (2017). Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations. Atmospheric Chemistry and Physics, 17, 2229–2253.
  10. Black, B. A., Lamarque, J.-F., Shields, C. A., & Elkins-Tanton, L. T. (2014). Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1), 67–70.
  11. Bobrowski, N., Hönninger, G., Galle, B., & Platt, U. (2003). Detection of bromine monoxide in a volcanic plume. Nature, 423, 273–276.
  12. Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W., & Platt, U. (2007). Reactive halogen chemistry in volcanic plumes. Journal of Geophysical Research. Atmospheres, 112(D6), D06311.
  13. Bogillo, V. I., Bazylevska, M. S., & Borchers, R. (2003). Past and future for ozone-depleting halocarbons in Antarctic environment. In S. Barany (Ed.), Role of interfaces in environmental protection (pp. 161–168). Springer, Dordrecht.
  14. Boichu, M., Oppenheimer, C., Roberts, T. J., Tsanev, V., & Kyle, P. R. (2011). On bromine, nitrogen oxides and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica). Atmospheric Environment, 45, 3856–3866.
  15. Brenna, H., Kutterolf, S., & Krüger, K. (2019). Global ozone depletion and increase of UV radiation caused by preindustrial tropical volcanic eruptions. Scientific Reports, 9, 9435.
  16. Brenna, H., Kutterolf, S., Mills, M. J., & Krüger, K. (2020). The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate. Atmospheric Chemistry and Physics, 20, 6521–6539.
  17. Bureau, H., Keppler, H., & Métrich, N. (2000). Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth and Planetary Science Letters, 183(1–2), 51–60.
  18. Butler, J. H., Battle, M., Bender, M. L., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., & Elkins, J. W. (1999). A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature, 399, 749–755.
  19. Cadoux, A., Scaillet, B., Bekki, S., Oppenheimer, C., & Druitt, T.H. (2015). Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Scientific Reports, 5, 12243.
  20. Carn, S. A., Clarisse, L., & Prata, A. J. (2016). Multi-decadal satellite measurements of global volcanic degassing. Journal of Volcanology and Geothermal Research, 311, 99–134.
  21. Carpenter, L. J., Hopkins, J. R., Jones, C. E., Lewis, A. C., Parthipan, R., Wevill, D. J., Poissant, L., Pilote, M., & Constant, P. (2005). Abiotic source of reactive organic halogens in the Sub-Arctic atmosphere? Environmental Science and Technology, 39(22), 8812–8816.
  22. Castellano, E., Becagli, S., Hansson, M., Hutterli, M., Petit, J. R., Rampino, M. R., Severi, M., Steffensen, J. P., Traversi, R., & Udisti, R. (2005). Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. Journal of Geophysical Research. Atmospheres, 110(D6), D06114.
  23. Chartrand, D. J., de Grandpré, J., & McConnell, J. C. (1999). An introduction to stratospheric chemistry: Survey article. Atmosphere-Ocean, 37(4), 309–367.
  24. Cole-Dai, J., Mosley-Thompson, E., Wight, S. P., & Thompson, L. G. (2000). A 4100-year record of explosive volcanism from an East Antarctica ice core. Journal of Geophysical Research. Atmospheres, 105(D19), 24431– 24441.
  25. De Vries, M. V. W., Bingham, R. G., & Hein, A. S. (2018). A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. In M. J. Siegert, S. S. R. Jamieson, & D. A. White (Eds.), Exploration of subsurface Antarctica: uncovering past changes and modern processes (pp.231–248). Geological Society, London, Special Publications.
  26. Etiope, G. (2004). New Directions: GEM — Geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment, 38(19), 3099–3100.
  27. Frische, M., Garofalo, K., Hansteen, T. H., & Borchers, R. (2006). Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochemistry, Geophysics, Geosysystems, 7(5), Q05020.
  28. General, S., Bobrowski, N., Pöhler, D., Weber, K., Fischer, C., & Platt, U. (2015). Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume. Journal of Volcanology and Geothermal Research, 300, 175–186.
  29. Gerlach, T. M. (2004). Volcanic sources of tropospheric ozone-depleting trace gases. Geochemistry, Geophysics, Geosystems, 5(9), Q09007.
  30. Graf, H.-F., Feichter, J., & Langmann, B. (1997). Volcanic sulfur emission: Estimates of source strength and its contribution to the global sulfate distribution. Journal of Geophysical Research, 102(D9), 10727–10738.
  31. Gutmann, A., Bobrowski, N., Roberts, T. J., Rüdiger, J., & Hoffmann, T. (2018). Advances in Bromine Speciation in Volcanic Plumes. Frontiers in Earth Science, 6, 213.
  32. Halmer, M. M., Schmincke, H.-U., & Graf, H.-F. (2002). The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. Journal of Volcanology and Geothermal Research, 115(3–4), 511–528.
  33. Isidorov, V. A., Zenkevich, I. G., & Ioffe, B. V. (1990). Volatile Organic Compounds in Solfataric Gases. Journal of Atmospheric Chemistry, 10, 329–340.
  34. Isidorov, V. A., Prilepsky, E. B., & Povarov, V. G. (1997). Geological sources of radiative and photochemically active components of the atmosphere. In P. M. Borrell, P. Borrell, & K. Kelly (Eds.), Proceedings of EUROTRAC Symposium ‘96: transport and transformation of pollutants in the troposphere, Garmisch-Partenkirchen, Germany 25th–29th, March 1996 (Vol. 2. pp. 79–85).
  35. Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., & Neely III, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophysical Research Letters, 44(5), 2556–2561.
  36. Jordan, A., Harnisch, J., Borchers, R., Le Guern, F., & Shinohara, H. (2000). Volcanogenic Halocarbons. Environmental Science and Technology, 34(6), 1122–1124.
  37. Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Saiz-Lopez, A., Cuevas, C. A., Fernandez, R. P., Sherwen, T., Volkamer, R., Koenig, T. K., Giroud, T., & Peter, T. (2021). Iodine chemistry in the chemistry-climate model SOCOL-AERv2-I. Geoscientific Model Development, 14, 6623–6645.
  38. Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Schöler, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403, 298–301.
  39. Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez, R. P., Guo, H., Hall, S. R., Kinnison, D., Nault, B. A., Ullmann, K., Jimenez, J. L., Saiz-Lopez, A., & Volkamer, R. (2020). Quantitative detection of iodine in the stratosphere. Proceeding of the National Academy of Sciences of the United States of America. 117, 1860–1866.
  40. Klobas, J. E., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G., & Salawitch, R. J. (2017). Ozone depletion following future volcanic eruptions. Geophysical Research Letters, 44, 7490–7499.
  41. Kurbatov, A. V., Zielinski, G. A., Dunbar, N. W., Mayewski, P. A., Meyerson, E. A., Sneed, S. B., & Taylor, K. C. (2006). A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. Journal of Geophysical Research: Atmospheres, 111(D12), D12307.
  42. Kyle, P. R., Dibble, R. R., Giggenbach, W. F., & Keys, J. R. (1982). Volcanic activity associated with anorthoclase phonolite lava lake, Mount Erebus, Antarctica. In C. Craddock (Ed.), Antarctic Geoscience (pp. 735–745). University of Wisconsin Press.
  43. Lee, C., Kim, Y. J., Tanimoto, H., Bobrowski, N., Platt, U., Mori T., Yamamoto, K., & Hong, C. S. (2005). High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophysical Research Letters, 32(21), L21809.
  44. LeMasurier, W. E., Thomson, J. W. Baker, P. E., Kyle, P. R., Rowley, P. D., Smellie, J. L., & Verwoerd, W. J. (Eds). (1990). Volcanoes of the Antarctic Plate and Southern Oceans (Vol. 48). Washington, DC: American Geophysical Union.
  45. Luo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies. CRC Press.
  46. Lurton, T., Jégou, F., Berthet, G., Renard, J.-B., Clarisse, L., Schmidt, A., Brogniez, C., & Roberts, T. J. (2018). Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in-situ and satellite observations. Atmospheric Chemistry and Physics, 18, 3223–3247.
  47. Madronich, S., McKenzie, R. L., Björn, L. O., & Caldwell, M. M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46(1–3), 5–19.
  48. Martin, R. S., Mather, T. A., & Pyle, D. M. (2006). Hightemperature mixtures of magmatic and atmospheric gases. Geochemistry, Geophysics, Geosystems, 7(4).
  49. Mather, T. A. (2015). Volcanoes and the environment: Lessons for understanding Earth’s past and future from studies of present-day volcanic emissions. Journal of Volcanology and Geothermal Research, 304, 160–179.
  50. McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J., Fudge, T. J., Knorr, G., Graf, H.- F., Grieman, M. M., … & Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 114(38), 10035–10040.
  51. Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I., & Thornton, B. (2006). Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere. Geophysical Research Letters, 33, L19815.
  52. Ming, A., Winton, V. H. L., Keeble, J., Abraham, N. L., Dalvi, M. C., Griffiths, P., Caillon, N., Jones, A. E., Mulvaney, R., Savarino, J., Frey, M. M., & Yang, X. (2020). Stratospheric ozone changes from explosive tropical volcanoes: Modeling and ice core constraints. Journal of Geophysical Research: Atmospheres, 125(11), e2019JD032290.
  53. Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X., & Gérard, M. (2017). Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change. Journal of Geophysical Research: Solid Earth, 122(2), 738–772.
  54. Narcisi, B., Petit, J. R., & Chappellaz, J. (2010). A 70 ka record of explosive eruptions from the TALDICE ice core (Talos Dome, East Antarctic plateau). Journal of Quaternary Science, 25(6), 844–849.
  55. Narcisi, B., Petit, J. R., Delmonte, B., Batanova, V., & Savarino, J. (2019). Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, 210, 164–174.
  56. Osipov, E. Y., Khodzher, T. V., Golobokova, L. P., Onischuk, N. A., Lipenkov, V. Y., Ekaykin, A. A., Shibaev, Y. A., & Osipova, O. P. (2014). High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica. The Cryosphere, 8, 843–851.
  57. Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., & Ruhl, M. (2015). Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428, 267–280.
  58. Plummer, C. T., Curran, M. A. J., van Ommen, T. D., Rasmussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B., Vinther, B. M., & Mayewski, P. A. (2012). An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Climate Past, 8, 1929–1940.
  59. Rasmussen, R. A., Rasmussen, L. E., Khalil, M. A. K., & Dalluge, R. W. (1980). Concentration distribution of methyl chloride in the atmosphere. Journal of Geophysical Research: Oceans, 85(C12), 7350–7356.
  60. Rasmussen, R. A., Khalil, M. A. K., Dalluge, R. W., Penkett, S. A., & Jones, B. (1982). Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens. Science, 215(4533), 665–667.
  61. Ren, J., Li, C., Hou, S., Xiao, C., Qin, D., Li, Y., & Ding, M. (2010). A 2680 year volcanic record from the DT-401 East Antarctic ice core. Journal of Geophysical Research: Atmospheres, 115, D11301.
  62. Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B., Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., Kondo, Y., Miller, T. M., & Ballenthin, J. O. (2006). Atmospheric chemistry of a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling. Journal of Geophysical Research: Atmospheres, 111, D20206.
  63. Schönhardt, A., Richter, A., Theys, N., & Burrows, J. P. (2017). Space-based observation of volcanic iodine monoxide. Atmospheric Chemistry and Physics, 17, 4857–4870.
  64. Schwandner, F. M., Seward, T. M., Gize, A. P., Hall, P. A., & Dietrich, V. J. (2004). Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). Journal of Geophysical Research: Atmospheres, 109(D4), D04301.
  65. Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., & Kipfstuhl, S. (2013). A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research: Atmospheres, 118, 1151–1169.
  66. Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buentgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., & Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543–549.
  67. Smellie, J. L., Panter, K. S., & Geyer, A. (2021). Introduction to volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. In J. L. Smellie, K. S. Panter, and A. Geyer (Eds.), Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up. Geological Society, London, Memoirs.
  68. Staunton-Sykes, J., Aubry, T. J., Shin, Y. M., Weber, J., Marshall, L. R., Abraham, N. L., Archibald, A., & Schmidt, A. (2021). Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing. Atmospheric Chemistry and Physics, 21(11), 9009–9029.
  69. Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., & Rose, W. I., Jr. (1971). Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala. GSA Bulletin, 82(8), 2299–2302.[2299:OCIVGF]2.0.CO;2
  70. Storey, B. C., Vaughan, A. P. M., & Riley, T. R. (2013). The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1), 17–30.
  71. Symonds, R. B., Poreda, R. J., Evans, W. C., Janik, C. J., & Ritchie, B. E. (2003). Mantle and crustal sources of carbon, nitrogen, and noble gases in Cascade-Rauge and Aleutian-Arc volcanic gases (Open-File Report 2003-436). US Geological Survey.
  72. Textor, C., Graf, H. F., Herzog, M., & Oberhuber, J. M. (2003). Injection of gases into the stratosphere by explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres, 108(D19), 4606.
  73. Toohey, M., & Sigl, M. (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data Discussions, 9, 809–831.
  74. Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A., Kartadinata, N., Robert, V., & Lavigne, F. (2016). The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Scientific Reports, 6, 34868.
  75. Wade, D. C., Vidal, C. M., Abraham, N. L., & Dhomse, S. (2020). Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proceedings of the National Academy of Sciences of USA, 117(43), 26651–26659.
  76. Wahrenberger, C. (1997). Some aspects of the chemistry of volcanic gases [Doctoral thesis, ETH Zurich]. Zurich, Switzerland.
  77. Zreda-Gostynska, G., Kyle, P. R., Finnegan, D., & Prestbo, K. M. (1997). Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research: Solid Earth, 102(B7), 15039–15055.
  78. Zuev, V. V., Zueva, N. E., Savelieva, E. S., & Gerasimov, V. V. (2015). The Antarctic ozone depletion caused by Erebus volcano gas emissions. Atmospheric Environment, 122, 393–399.