Вплив вулканічної емісії галогенопохідних сполук на довкілля Південної півкулі та Антарктики
- вулканічна емісія,
- галогеновуглеводні,
- галогеноводні,
- радикально-ланцюгові реакції,
- руйнування стратосферного озону
Авторське право (c) 2021 Український антарктичний журнал
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Анотація
Метою дослідження було оцінити та порівняти глобальні викиди 20 галогеновуглеводнів із вулканічних та гідротермальних джерел в атмосферу Землі та їхній вплив на озоновий шар. З'ясовано, що внесок вулканічної емісії цих сполук у руйнування стратосферного озону у каталітичних галогенних циклах не перевищує 0,1%, але вони істотно знижують рівень тропосферного озону поблизу самих вулканів. Запропоновано і підтверджено термодинамічними та кінетичними розрахунками схему газофазного вільно-радикального ланцюгового галогенування вуглеводнів, яка дозволяє пояснити експериментальні співвідношення між концентраціями CH3I : CH3Br : CH3Cl і CCl4 : CHCl3 : CH2Cl2 : CH3Cl у вулканічних газах. Можливий вулканічний викид галогеновуглеводнів з Еребуса та вибухові виверження в Південній півкулі протягом голоцену не мали помітного впливу на їх вміст в антарктичному льоді. Однак вулканічний викид галогеноводнів (HX, X = Cl, Br та I) від потужних вивержень тих часів був здатний істотно виснажити стратосферний озон, спричинивши різкий вплив шкідливого випромінювання УФ-Б на біоту материків і океану. Розраховано значення еквівалентного ефективного стратосферного хлору та оцінено відсоткову зміну стратосферного озону (Δ%O3) для 20 відомих вивержень вулканів у тропічному поясі та у південних широтах. Здійснені розрахунки демонструють виснаження стратосферного озону більш ніж на 50% після потужних минулих вивержень вулканів. Крім того, діапазон можливого руйнування озонового шару після виверження вулкану острова Десепшен, близько 4000 років тому (від 44 до 56%), можна порівняти з впливом вулканів Кракатау, Самалас і Тамбора. Оцінка 192-річної серії багатих галогенами вивержень вулкану Такахе (Західна Антарктида) 17,7 тис. років тому свідчить про значне виснаження стратосферного озону над Антарктидою. Окрім зазначеного, враховуючи весь обсяг базальтових лав великої магматичної провінції Феррар, Δ%O3 після вивержень в Антарктиді 183 млн. років оцінили від 49% до 83%. Встановлено, що через незначну кількість викидів HCl від нееруптивного дегазуючого вулкана Еребус, такий викид не може бути суттєвою причиною сучасного весняного утворення озонових дір над Антарктидою.
Посилання
- Aarnes, I., Fristad, K., Planke, S., & Svensen, H. (2011). The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 12(10), Q10019. https://doi.org/10.1029/2011GC003636
- Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., McGonigle, A. J. S., & Valenza, M. (2005). Emission of bromine and iodine from Mount Etna volcano. Geochemistry, Geophysics, Geosystems, 6(8), Q08008. https://doi.org/10.1029/2005GC000965
- Aiuppa, A., Baker, D. R., & Webster, J. D. (2009). Halogens in volcanic systems. Chemical Geology, 263(1–4), 1–18. https://doi.org/10.1016/j.chemgeo.2008.10.005
- Antoniades, D., Giralt, S., Geyer, A., & Álvarez-Valero, A. M. (2018). The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Scientific Reports, 8, 17279. https://doi.org/10.1038/s41598-018-35460-x
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & IUPAC Subcommittee. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II — gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6, 3625–4055. https://doi.org/10.5194/acp-6-3625-2006
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2007). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 7(4), 981–1191. https://doi.org/10.5194/acp-7-981-2007
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Wallington, T. J. (2008). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV — gas phase reactions of organic halogen species. Atmospheric Chemistry and Physics, 8,4141–4496. https://doi.org/10.5194/acp-8-4141-2008
- Beerling, D. J., Harfoot, M., Lomax, B., & Pyle, J. A. (2007). The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transations of the Royal Society A, 365, 1843–1866. https://doi.org/10.1098/rsta.2007.2046
- Berthet, G., Jegou, F., Catoire, V., Krysztofiak, G., Renard, J.-B., Bourassa, A. E., Degenstein, D. A., Brogniez, C., Dorf, M., Kreycy, S., Pfeilsticker, K., Werner, B., Lefèvre, F., Roberts, T. J., Lurton, T., Vignelles, D., Bègue, N., Bourgeois, Q., Daugeron, D., Chartier, M., Robert, C., Gaubicher, B., & Guimbaud, C. (2017). Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations. Atmospheric Chemistry and Physics, 17, 2229–2253. https://doi.org/10.5194/acp-17-2229-2017
- Black, B. A., Lamarque, J.-F., Shields, C. A., & Elkins-Tanton, L. T. (2014). Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1), 67–70. https://doi.org/10.1130/G34875.1
- Bobrowski, N., Hönninger, G., Galle, B., & Platt, U. (2003). Detection of bromine monoxide in a volcanic plume. Nature, 423, 273–276. https://doi.org/10.1038/nature01625
- Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W., & Platt, U. (2007). Reactive halogen chemistry in volcanic plumes. Journal of Geophysical Research. Atmospheres, 112(D6), D06311. https://doi.org/10.1029/2006jD007206
- Bogillo, V. I., Bazylevska, M. S., & Borchers, R. (2003). Past and future for ozone-depleting halocarbons in Antarctic environment. In S. Barany (Ed.), Role of interfaces in environmental protection (pp. 161–168). Springer, Dordrecht.
- Boichu, M., Oppenheimer, C., Roberts, T. J., Tsanev, V., & Kyle, P. R. (2011). On bromine, nitrogen oxides and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica). Atmospheric Environment, 45, 3856–3866. https://doi.org/10.1016/j.atmosenv.2011.03.027
- Brenna, H., Kutterolf, S., & Krüger, K. (2019). Global ozone depletion and increase of UV radiation caused by preindustrial tropical volcanic eruptions. Scientific Reports, 9, 9435. https://doi.org/10.1038/s41598-019-45630-0
- Brenna, H., Kutterolf, S., Mills, M. J., & Krüger, K. (2020). The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate. Atmospheric Chemistry and Physics, 20, 6521–6539. https://doi.org/10.5194/acp-20-6521-2020
- Bureau, H., Keppler, H., & Métrich, N. (2000). Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth and Planetary Science Letters, 183(1–2), 51–60. https://doi.org/10.1016/S0012-821X(00)00258-2
- Butler, J. H., Battle, M., Bender, M. L., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., & Elkins, J. W. (1999). A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature, 399, 749–755. https://doi.org/10.1038/21586
- Cadoux, A., Scaillet, B., Bekki, S., Oppenheimer, C., & Druitt, T.H. (2015). Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Scientific Reports, 5, 12243. https://doi.org/10.1038/srep12243
- Carn, S. A., Clarisse, L., & Prata, A. J. (2016). Multi-decadal satellite measurements of global volcanic degassing. Journal of Volcanology and Geothermal Research, 311, 99–134. https://doi.org/10.1016/j.jvolgeores.2016.01.002
- Carpenter, L. J., Hopkins, J. R., Jones, C. E., Lewis, A. C., Parthipan, R., Wevill, D. J., Poissant, L., Pilote, M., & Constant, P. (2005). Abiotic source of reactive organic halogens in the Sub-Arctic atmosphere? Environmental Science and Technology, 39(22), 8812–8816. https://doi.org/10.1021/es050918w
- Castellano, E., Becagli, S., Hansson, M., Hutterli, M., Petit, J. R., Rampino, M. R., Severi, M., Steffensen, J. P., Traversi, R., & Udisti, R. (2005). Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. Journal of Geophysical Research. Atmospheres, 110(D6), D06114. https://doi.org/10.1029/2004JD005259
- Chartrand, D. J., de Grandpré, J., & McConnell, J. C. (1999). An introduction to stratospheric chemistry: Survey article. Atmosphere-Ocean, 37(4), 309–367. https://doi.org/10.1080/07055900.1999.9649631
- Cole-Dai, J., Mosley-Thompson, E., Wight, S. P., & Thompson, L. G. (2000). A 4100-year record of explosive volcanism from an East Antarctica ice core. Journal of Geophysical Research. Atmospheres, 105(D19), 24431– 24441. https://doi.org/10.1029/2000JD900254
- De Vries, M. V. W., Bingham, R. G., & Hein, A. S. (2018). A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. In M. J. Siegert, S. S. R. Jamieson, & D. A. White (Eds.), Exploration of subsurface Antarctica: uncovering past changes and modern processes (pp.231–248). Geological Society, London, Special Publications. https://doi.org/10.1144/SP461.7
- Etiope, G. (2004). New Directions: GEM — Geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment, 38(19), 3099–3100. https://doi.org/10.1016/j.atmosenv.2004.04.002
- Frische, M., Garofalo, K., Hansteen, T. H., & Borchers, R. (2006). Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochemistry, Geophysics, Geosysystems, 7(5), Q05020. https://doi.org/10.1029/2005GC001162
- General, S., Bobrowski, N., Pöhler, D., Weber, K., Fischer, C., & Platt, U. (2015). Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume. Journal of Volcanology and Geothermal Research, 300, 175–186. https://doi.org/10.1016/j.jvolgeores.2014.05.012
- Gerlach, T. M. (2004). Volcanic sources of tropospheric ozone-depleting trace gases. Geochemistry, Geophysics, Geosystems, 5(9), Q09007. https://doi.org/10.1029/2004GC000747
- Graf, H.-F., Feichter, J., & Langmann, B. (1997). Volcanic sulfur emission: Estimates of source strength and its contribution to the global sulfate distribution. Journal of Geophysical Research, 102(D9), 10727–10738. https://doi.org/10.1029/96JD03265
- Gutmann, A., Bobrowski, N., Roberts, T. J., Rüdiger, J., & Hoffmann, T. (2018). Advances in Bromine Speciation in Volcanic Plumes. Frontiers in Earth Science, 6, 213. https://doi.org/10.3389/feart.2018.00213
- Halmer, M. M., Schmincke, H.-U., & Graf, H.-F. (2002). The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. Journal of Volcanology and Geothermal Research, 115(3–4), 511–528. https://doi.org/10.1016/S0377-0273(01)00318-3
- Isidorov, V. A., Zenkevich, I. G., & Ioffe, B. V. (1990). Volatile Organic Compounds in Solfataric Gases. Journal of Atmospheric Chemistry, 10, 329–340. https://doi.org/10.1007/BF00053867
- Isidorov, V. A., Prilepsky, E. B., & Povarov, V. G. (1997). Geological sources of radiative and photochemically active components of the atmosphere. In P. M. Borrell, P. Borrell, & K. Kelly (Eds.), Proceedings of EUROTRAC Symposium ‘96: transport and transformation of pollutants in the troposphere, Garmisch-Partenkirchen, Germany 25th–29th, March 1996 (Vol. 2. pp. 79–85).
- Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., & Neely III, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophysical Research Letters, 44(5), 2556–2561. https://doi.org/10.1002/2016GL071925
- Jordan, A., Harnisch, J., Borchers, R., Le Guern, F., & Shinohara, H. (2000). Volcanogenic Halocarbons. Environmental Science and Technology, 34(6), 1122–1124. https://doi.org/10.1021/es990838q
- Karagodin-Doyennel, A., Rozanov, E., Sukhodolov, T., Egorova, T., Saiz-Lopez, A., Cuevas, C. A., Fernandez, R. P., Sherwen, T., Volkamer, R., Koenig, T. K., Giroud, T., & Peter, T. (2021). Iodine chemistry in the chemistry-climate model SOCOL-AERv2-I. Geoscientific Model Development, 14, 6623–6645. https://doi.org/10.5194/gmd-14-6623-2021
- Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Schöler, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403, 298–301. https://doi.org/10.1038/35002055
- Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez, R. P., Guo, H., Hall, S. R., Kinnison, D., Nault, B. A., Ullmann, K., Jimenez, J. L., Saiz-Lopez, A., & Volkamer, R. (2020). Quantitative detection of iodine in the stratosphere. Proceeding of the National Academy of Sciences of the United States of America. 117, 1860–1866. https://doi.org/10.1073/pnas.1916828117
- Klobas, J. E., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G., & Salawitch, R. J. (2017). Ozone depletion following future volcanic eruptions. Geophysical Research Letters, 44, 7490–7499. https://doi.org/10.1002/2017GL073972.
- Kurbatov, A. V., Zielinski, G. A., Dunbar, N. W., Mayewski, P. A., Meyerson, E. A., Sneed, S. B., & Taylor, K. C. (2006). A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. Journal of Geophysical Research: Atmospheres, 111(D12), D12307. https://doi.org/10.1029/2005JD006072
- Kyle, P. R., Dibble, R. R., Giggenbach, W. F., & Keys, J. R. (1982). Volcanic activity associated with anorthoclase phonolite lava lake, Mount Erebus, Antarctica. In C. Craddock (Ed.), Antarctic Geoscience (pp. 735–745). University of Wisconsin Press.
- Lee, C., Kim, Y. J., Tanimoto, H., Bobrowski, N., Platt, U., Mori T., Yamamoto, K., & Hong, C. S. (2005). High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophysical Research Letters, 32(21), L21809. https://doi.org/10.1029/2005GL023785
- LeMasurier, W. E., Thomson, J. W. Baker, P. E., Kyle, P. R., Rowley, P. D., Smellie, J. L., & Verwoerd, W. J. (Eds). (1990). Volcanoes of the Antarctic Plate and Southern Oceans (Vol. 48). Washington, DC: American Geophysical Union. https://doi.org/10.1029/AR048
- Luo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies. CRC Press. https://doi.org/10.1201/9781420007282
- Lurton, T., Jégou, F., Berthet, G., Renard, J.-B., Clarisse, L., Schmidt, A., Brogniez, C., & Roberts, T. J. (2018). Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in-situ and satellite observations. Atmospheric Chemistry and Physics, 18, 3223–3247. https://doi.org/10.5194/acp-18-3223-2018
- Madronich, S., McKenzie, R. L., Björn, L. O., & Caldwell, M. M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46(1–3), 5–19. https://doi.org/10.1016/S1011-1344(98)00182-1
- Martin, R. S., Mather, T. A., & Pyle, D. M. (2006). Hightemperature mixtures of magmatic and atmospheric gases. Geochemistry, Geophysics, Geosystems, 7(4). https://doi.org/10.1029/2005GC001186
- Mather, T. A. (2015). Volcanoes and the environment: Lessons for understanding Earth’s past and future from studies of present-day volcanic emissions. Journal of Volcanology and Geothermal Research, 304, 160–179. https://doi.org/10.1016/j.jvolgeores.2015.08.016
- McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F., Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J., Fudge, T. J., Knorr, G., Graf, H.- F., Grieman, M. M., … & Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 114(38), 10035–10040. https://doi.org/10.1073/pnas.1705595114
- Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I., & Thornton, B. (2006). Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere. Geophysical Research Letters, 33, L19815. https://doi.org/10.1029/2006GL026959
- Ming, A., Winton, V. H. L., Keeble, J., Abraham, N. L., Dalvi, M. C., Griffiths, P., Caillon, N., Jones, A. E., Mulvaney, R., Savarino, J., Frey, M. M., & Yang, X. (2020). Stratospheric ozone changes from explosive tropical volcanoes: Modeling and ice core constraints. Journal of Geophysical Research: Atmospheres, 125(11), e2019JD032290. https://doi.org/10.1029/2019JD032290
- Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X., & Gérard, M. (2017). Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change. Journal of Geophysical Research: Solid Earth, 122(2), 738–772. https://doi.org/10.1002/2016JB013354
- Narcisi, B., Petit, J. R., & Chappellaz, J. (2010). A 70 ka record of explosive eruptions from the TALDICE ice core (Talos Dome, East Antarctic plateau). Journal of Quaternary Science, 25(6), 844–849. https://doi.org/10.1002/jqs.1427
- Narcisi, B., Petit, J. R., Delmonte, B., Batanova, V., & Savarino, J. (2019). Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, 210, 164–174. https://doi.org/10.1016/j.quascirev.2019.03.005
- Osipov, E. Y., Khodzher, T. V., Golobokova, L. P., Onischuk, N. A., Lipenkov, V. Y., Ekaykin, A. A., Shibaev, Y. A., & Osipova, O. P. (2014). High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica. The Cryosphere, 8, 843–851. https://doi.org/10.5194/tc-8-843-2014
- Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., & Ruhl, M. (2015). Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428, 267–280. https://doi.org/10.1016/j.epsl.2015.06.064
- Plummer, C. T., Curran, M. A. J., van Ommen, T. D., Rasmussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B., Vinther, B. M., & Mayewski, P. A. (2012). An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Climate Past, 8, 1929–1940. https://doi.org/10.5194/cp-8-1929-2012
- Rasmussen, R. A., Rasmussen, L. E., Khalil, M. A. K., & Dalluge, R. W. (1980). Concentration distribution of methyl chloride in the atmosphere. Journal of Geophysical Research: Oceans, 85(C12), 7350–7356. https://doi.org/10.1029/JC085iC12p07350
- Rasmussen, R. A., Khalil, M. A. K., Dalluge, R. W., Penkett, S. A., & Jones, B. (1982). Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens. Science, 215(4533), 665–667. https://doi.org/10.1126/science.215.4533.665
- Ren, J., Li, C., Hou, S., Xiao, C., Qin, D., Li, Y., & Ding, M. (2010). A 2680 year volcanic record from the DT-401 East Antarctic ice core. Journal of Geophysical Research: Atmospheres, 115, D11301. https://doi.org/10.1029/2009JD012892
- Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B., Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., Kondo, Y., Miller, T. M., & Ballenthin, J. O. (2006). Atmospheric chemistry of a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling. Journal of Geophysical Research: Atmospheres, 111, D20206. https://doi.org/10.1029/2005JD006872
- Schönhardt, A., Richter, A., Theys, N., & Burrows, J. P. (2017). Space-based observation of volcanic iodine monoxide. Atmospheric Chemistry and Physics, 17, 4857–4870. https://doi.org/10.5194/acp-17-4857-2017
- Schwandner, F. M., Seward, T. M., Gize, A. P., Hall, P. A., & Dietrich, V. J. (2004). Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). Journal of Geophysical Research: Atmospheres, 109(D4), D04301. https://doi.org/10.1029/2003JD003890
- Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., & Kipfstuhl, S. (2013). A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research: Atmospheres, 118, 1151–1169. https://doi.org/10.1029/2012JD018603
- Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buentgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schüpbach, S., Steffensen, J. P., Vinther, B. M., & Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543–549. https://doi.org/10.1038/nature14565
- Smellie, J. L., Panter, K. S., & Geyer, A. (2021). Introduction to volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. In J. L. Smellie, K. S. Panter, and A. Geyer (Eds.), Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up. Geological Society, London, Memoirs. https://doi.org/10.1144/M55-2020-14
- Staunton-Sykes, J., Aubry, T. J., Shin, Y. M., Weber, J., Marshall, L. R., Abraham, N. L., Archibald, A., & Schmidt, A. (2021). Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing. Atmospheric Chemistry and Physics, 21(11), 9009–9029. https://doi.org/10.5194/acp-21-9009-2021
- Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., & Rose, W. I., Jr. (1971). Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala. GSA Bulletin, 82(8), 2299–2302. https://doi.org/10.1130/0016-7606(1971)82[2299:OCIVGF]2.0.CO;2
- Storey, B. C., Vaughan, A. P. M., & Riley, T. R. (2013). The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1), 17–30. https://doi.org/10.1017/S175569101300011X
- Symonds, R. B., Poreda, R. J., Evans, W. C., Janik, C. J., & Ritchie, B. E. (2003). Mantle and crustal sources of carbon, nitrogen, and noble gases in Cascade-Rauge and Aleutian-Arc volcanic gases (Open-File Report 2003-436). US Geological Survey. https://doi.org/10.3133/ofr03436
- Textor, C., Graf, H. F., Herzog, M., & Oberhuber, J. M. (2003). Injection of gases into the stratosphere by explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres, 108(D19), 4606. https://doi.org/10.1029/2002JD002987
- Toohey, M., & Sigl, M. (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data Discussions, 9, 809–831. https://doi.org/10.5194/essd-2017-31
- Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A., Kartadinata, N., Robert, V., & Lavigne, F. (2016). The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Scientific Reports, 6, 34868. https://doi.org/10.1038/srep34868
- Wade, D. C., Vidal, C. M., Abraham, N. L., & Dhomse, S. (2020). Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proceedings of the National Academy of Sciences of USA, 117(43), 26651–26659. https://doi.org/10.1073/pnas.1919807117
- Wahrenberger, C. (1997). Some aspects of the chemistry of volcanic gases [Doctoral thesis, ETH Zurich]. Zurich, Switzerland. https://doi.org/10.3929/ethz-a-001852436
- Zreda-Gostynska, G., Kyle, P. R., Finnegan, D., & Prestbo, K. M. (1997). Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research: Solid Earth, 102(B7), 15039–15055. https://doi.org/10.1029/97JB00155
- Zuev, V. V., Zueva, N. E., Savelieva, E. S., & Gerasimov, V. V. (2015). The Antarctic ozone depletion caused by Erebus volcano gas emissions. Atmospheric Environment, 122, 393–399. https://doi.org/10.1016/j.atmosenv.2015.10.005