Ukrainian Antarctic journal

Vol 20 No 1(24) (2022): Ukrainian Antarctic Journal
Articles

Taxocene of pelagic copepods in coastal waters of the Argentine Islands, West coast of the Antarctic Peninsula, in 2021—2022

V. Tkachenko
Priazovsky National Park, Melitopol, 72309, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Published August 4, 2022
Keywords
  • biodiversity,
  • copepods,
  • ice cover,
  • mesozooplankton,
  • omnivorous species

Abstract

Pelagic ecosystems are changing in response to the recent climate warming. The mesozooplankton and copepods in particular are important indicators of the state of aquatic ecosystems. Zooplankton in Antarctic waters has been monitored regularly to study biodiversity, food chains, and ecological cycles. In 2021–2022, pilot study of mesozooplankton groups was added to the marine biological research of the Ukrainian Antarctic Program. The preliminary information was obtained on the taxonomic composition and functional characteristics of the taxocene of copepods in the coastal waters of the Argentine Islands. The observed diversity is strongly influenced by the conditions and the available sampling gear. The samples were collected from motor boats using three kinds of plankton nets depending on the weather and ice conditions. From June to February, the predominant species were the common coastal species and species adapted to feeding in the cold upper layers in winter. Trawling samples collected from March to late May best illustrate the seasonal dynamics of the mesozooplankton communities’ temporary and permanent components. Twelve copepods from eight families were identified to the species level. Most constituent species were omnivorous (7 species), followed by detritophages (3 species). The community’s phytophages and predators were locally common. This trophic distribution likely is evidence that they were collected in the surface layer, which is not always favorable for feeding. Therefore, the percentage of omnivorous opportunists was relatively high. Some of the sampled material requires molecular-biological analysis, especially the copepods from the Oncaea Philippi, 1843 and Triconia Böttger-Schnack, 1999 genera. The older copepodites, in particular the adult specimens, were rarely collected. The state of the material was not ideal for unambiguous identification by morphological features. Comparing the results with the latest research on the west coast of the Antarctic Peninsula, we see that the species composition is highly similar (around 80%), except for the deep-water taxa.

References

  1. Atkinson, A. (1998). Life cycle strategies of epipelagic copepods in the Southern Ocean. Journal of Marine Systems, 15(1—4), 289—311. https://doi.org/10.1016/S0924-7963(97)00081-X
  2. Bocher, P., Cherel, Y., Alonzo, F., Razouls, S., Labat, J. P., Mayzaud, P., & Jouventin, P. (2002). Importance of the large copepod Paraeuchaeta antarctica (Giesbrecht, 1902) in coastal waters and the diet of seabirds at Kerguelen, Southern Ocean. Journal of Plankton Research, 24(12), 1317—1333. https://doi.org/10.1093/plankt/24.12.1317
  3. Chiba, S., Ishimaru, T., Hosie, G. W., & Fukuchi, M. (2002). Spatio-temporal variability in life cycle strategy of four pelagic Antarctic copepods: Rhincalanus gigas, Calanoides acutus, Calanus propinquus and Metridia gerlachei. Polar Bioscience, 15, 27—44.
  4. Dias, C. O., De Araujo, A. V., & Bonecker, S. L. C. (2019). Distribution, diversity, and habitat partitioning of Scolecitrichidae species (Copepoda: Calanoida) down to 1,200 m in the Southwestern Atlantic Ocean. Anais da Academia Brasileira de Ciencias, 91(01), e20170973. https://doi.org/10.1590/0001-3765201920170973
  5. Dubischar, C. D., Lopes, R. M., & Bathmann, U. V. (2002). High summer abundances of small pelagic copepods at the Antarctic Polar Front — implications for ecosystem dynamics. Deep-Sea Research II, 49, 3871—3887.
  6. Gleiber, M. R., Steinberg, D. K., & Schofield, O. M. E. (2015). Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. Journal of Plankton Research, 38(3), 732—750. https://doi.org/10.1093/plankt/fbv070
  7. Hagen, W., Kattner, G., & Graeve, M. (1993). Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Marine Ecology Progress Series, 97, 135—142. https://doi.org/10.3354/meps097135
  8. Hardy, A. C. (1936). Observations on the uneven distribution of oceanic plankton. Discovery Reports, 11, 511—538.
  9. Head, R. N., Harris, R. P., Bonnet, D., & Irigoien, X. (1999). A comparative study of size-fractionated mesozooplankton biomass and grazing in the North East Atlantic. Journal of Plankton Research, 21(12), 2285—2308. https://doi.org/10.1093/plankt/21.12.2285
  10. HELCOM. (2021). Guidelines for monitoring of mesozooplankton. https://helcom.fi/wp-content/uploads/2019/08/Guidelines-for-monitoring-of-mesozooplankton.pdf
  11. Huntley, M. E., & Escritor, F. (1992). Ecology of Metridia gerlachei Giesbrecht in the western Bransfield Strait, Antarctica. Deep Sea Research Part A. Oceanographic Research Papers, 39(6), 1027—1055. https://doi.org/10.1016/0198-0149(92)90038-U
  12. Marin, V. H., & Schnack-Schiel, S. B. (1993). The occurrence of Rhincalanus gigas, Calanoides acutus, and Calanus propinquus (Copepoda: Calanoida) in late May in the area of the Antarctic Peninsula. Polar Biology, 13(1), 35—40. https://doi.org/10.1007/BF00236581
  13. Marrari, M., Daly, K. L., Timonin, A., & Semenova, T. (2011a). The zooplankton of Marguerite Bay, western Antarctic Peninsula — Part I: Abundance, distribution, and population response to variability in environmental conditions. DeepSea Research II: Topical Studies in Oceanography, 58(13—16), 1599—1613. https://doi.org/10.1016/j.dsr2.2010.12.007
  14. Marrari, M., Daly, K. L., Timonin, A., & Semenova, T. (2011b). The zooplankton of Marguerite Bay, western Antarctic Peninsula — Part II: Vertical distributions and habitat partitioning. Deep-Sea Research II: Topical Studies in Oceanography, 58(13—16), 1614—1629. https://doi.org/10.1016/j.dsr2.2010.12.006
  15. Mazzocchi, M. G., Zagami, G., Ianora, A., Guglielmo, L., Crescenti, N., & Hure, J. (1995). Atlas of Marine Zooplankton Straits of Magellan. https://doi.org/10.1007/978-3-642-79139-0
  16. McLeod, D. J., Hosie, G. W., Kitchener, J. A., Takahashi, K. T., & Hunt, B. P. V. (2010). Zooplankton Atlas of the Southern Ocean: The SCAR SO-CPR Survey (1991—2008). Polar Science, 4(2), 353—385. https://doi.org/10.1016/j.polar.2010.03.004
  17. Nishibe, Y., & Ikeda, T. (2007). Vertical distribution, population structure and life cycles of four oncaeid copepods in the Oyashio region, western subarctic Pacific. Marine Biology, 150, 609—625. https://doi.org/10.1007/s00227-006-0382-5
  18. Palmer Station Antarctica LTER, & Waite,N. (2022). Merged discrete water-column data from annual PAL LTER field seasons at Palmer Station, Antarctica, from 1991 to 2021. (ver 1.) Environmental Data Initiative. https://doi.org/10.6073/pasta/7358be99bd7ec1c73293893defb289d3
  19. Park, T. (1994). Taxonomy and distribution of the marine calanoid copepod family Euchaetidae. Bulletin of the SCRIPPS Institution of Oceanography University of Calofornia San Diego, 29, 204.
  20. Pasternak, A. F., & Schnack-Schiel, S. B. (2007). Feeding of Ctenocalanus citer in the eastern Weddell Sea: low in summer and spring, high in autumn and winter. Polar Biology, 30, 493—501. https://doi.org/10.1007/s00300-006-0208-4
  21. Pond, D. W., & Ward, P. (2011). Importance of diatoms for Oithona in Antarctic waters. Journal of Plankton Research, 33(1), 105—118. https://doi.org/10.1093/plankt/FBQ089
  22. Schnack-Schiel, S. B., & Hagen, W. (1994). Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepod species in the eastern Weddell Sea, Antarctica. Journal of Plankton Research, 16(11), 1543—1566.
  23. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., & Iannuzzi, R. A. (2008). Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Research II: Topical Studies in Oceanography, 55(18—19), 2041—2058. https://doi.org/10.1016/j.dsr2.2008.04.026
  24. Steinberg, D. K., Ruck, K. E., Gleiber, M. R., Garzio, L. M., Cope, J. S., Bernard, K. S., Stammerjohn, S. E., Schofield, O. M. E., Quetin, L.B., & Ross, R.M. (2015). Long-term (1993—2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Research II: Oceanographic Research Papers, 101, 54—70. http://doi.org/10.1016/j.dsr.2015.02.009
  25. Takahashi, K. T., & Hosie, G. W. (2020). Report on the status and trends of Southern Ocean zooplankton based on the SCAR Southern Ocean continuous plankton recorder (SO-CPR) survey. https://archimer.ifremer.fr/doc/00705/81669/
  26. Volkov, A. (2008). Metodika sbora i obrabotki planktona i prob po pitaniju nektona (poshagovye instrukcii). [Methods of collection and processing of plankton and nekton feeding samples (step-by-step instructions)]. Izvestiya TINRO, 154, 405—416.
  27. Ward, P., Atkinson, A., Schnack-Schiel, S. B., & Murray, A.W. A. (1997). Regional variation in the life cycle of Rhincalanus gigas (Copepoda: Calanoida) in the Atlantic Sector of the Southern Ocean — re-examination of existing data (1928 to 1993). Marine Ecology Progress Series, 157, 261—275.
  28. Yamaguchi, A., Ikeda, T., & Hirakawa, K. (1999). Diel vertical migration, population structure and life cycle of the copepod Scolecithricella minor (Calanoida: Scolecitrichidae) in Toyama Bay, southern Japan Sea. Plankton Biology and Ecology, 46(1), 54—61.
  29. Żmijewska, M. I., Bielecka, L., & Grabowska, A. (2000). Seasonal and diel changes in the vertical distribution in relation to the age structure of Microcalanus pygmaeus Sars and Ctenocalanus citer Bowman & Heron, (Pseudocalanidae, Copepoda) from Croker Passage (Antarctic Peninsula). Oceanologia, 42(1), 89—103.