Ukrainian Antarctic Journal

Vol 21 No 1(26) (2023): Ukrainian Antarctic Journal
Articles

Plant growth promoting properties of an antarctic strain Amycolatopsis sp. Cq 72-27

I. Roman
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
O. Gromyko
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
Published August 16, 2023
Keywords
  • antarctic actinomycetes,
  • biocontrol,
  • plant growth-promoting bacteria,
  • rhizospheric bacteria
How to Cite
Roman, I., & Gromyko, O. (2023). Plant growth promoting properties of an antarctic strain Amycolatopsis sp. Cq 72-27. Ukrainian Antarctic Journal, 21(1(26), 79-89. https://doi.org/10.33275/1727-7485.1.2023.708

Abstract

Unique biotopes can be a source of new plant growth promotion (PGP) bacteria with rare properties. The Antarctic habitat is an attractive location for research, as it is characterized by many stress factors, and the local microbiota is under permanent selective pressure. We believe that the rhizosphere bacteria of this habitat may have important PGP properties that can be used in agriculture. A variety of research methods were used in this work: the molecular genetic technique to establish the gene sequence, chemical to test the ability to produce nitrite, ammonia, and indole acetic acid, microbiological to investigate the cultured properties of the strain, as well as antagonistic and PGP activities. We found that the strain belongs to the genus Amycolatopsis. It showed antagonistic activity against phytopathogenic bacteria (Xanthomonas campestris pv. campestris IMB8003 and Bacillus subtilis ATCC 31324) and fungi (Alternaria alternata DSM 1102, Fusarium oxysporum ІМВ 54201, Aspergillus niger ІМВ 16706), and also demonstrated some PGP properties (solubilization of phosphorus and zinc and production of nitrite and ammonia). Inoculation of wheat seeds with spores of this strain promoted germination and growth of seedlings. The strain has demonstrated properties that make it a promising basis for developing biofertilizers that can be used in agriculture.

References

  1. Bhakat, K., Chakraborty, A., & Islam, E. (2021). Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil. World Journal of Microbiology and Biotechnology, 37(3), 39. https://doi.org/10.1007/s11274-021-03003-8
  2. Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8
  3. Cueva-Yesquén, L. G., Goulart, M. C., Attili de Angelis, D., Nopper Alves, M., & Fantinatti-Garboggini, F. (2021). Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower. Frontiers in Plant Science, 11, 621740. https://doi.org/10.3389/fpls.2020.621740
  4. French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H., & Enders, L. (2021). Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants, 7(3), 256–267. https://doi.org/10.1038/s41477-020-00830-9
  5. Gallardo-Cerda, J., Levihuan, J., Lavín, P., Oses, R., Atala, C., Torres-Díaz, C., Cuba-Díaz, M., Barrera, A., & Molina-Montenegro, M. A. (2018). Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biology, 41(10), 1973–1982. https://doi.org/10.1007/s00300-018-2336-z
  6. Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and applied microbiology, 38(4), 237–245. https://doi.org/10.1016/j.syapm.2015.03.007
  7. Gohain, A., Manpoong, C., Saikia, R., & De Mandal, S. (2020). Actinobacteria: Diversity and biotechnological applications.In S. de Mandal, & P. Bhatt (Eds.), Recent Advancements in Microbial Diversity (1st ed., pp. 217–231). https://doi.org/10.1016/B978-0-12-821265-3.00009-8
  8. Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., & Zhou, Y. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 9(1), 1248. https://doi.org/10.1038/s41598-018-37838-3
  9. Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  10. Igarashi, Y. (2004). Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica, 18(2), 63–66. https://doi.org/10.3209/saj.18_63
  11. Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., & De Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260. https://doi.org/10.1016/j.rse.2019.111260
  12. Khanna, K., Jamwal, V. L., Kohli, S. K., Gandhi, S. G., Ohri, P., Bhardwaj, R., Wijaya, L., Nasser Alyemeni, M., & Ahmad, P. (2019). Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant and Soil, 436(1), 325–345. https://doi.org/10.1007/s11104-019-03932-2
  13. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Practical streptomyces genetics (Vol. 291). John Innes Foundation.
  14. Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. https://doi.org/10.3389/fmicb.2020.01216
  15. Li, R., Wang, M., Ren, Z., Ji, Y., Yin, M., Zhou, H., & Tang, S. K. (2021). Amycolatopsis aidingensis sp. nov., a halotolerant actinobacterium, produces new secondary metabolites. Frontiers in Microbiology, 12, 743116. https://doi.org/10.3389/fmicb.2021.743116
  16. Loc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., & Thu Ha, T. T. (2020). Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology, 11(1), 38–48. https://doi.org/10.1080/21501203.2019.1703839
  17. Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12(1), 51–53. https://doi.org/10.1128/jmbe.v12i1.249
  18. Majeed, A., Muhammad, Z., & Ahmad, H. (2018). Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Reports, 37(12), 1599–1609. https://doi.org/10.1007/s00299-018-2341-2
  19. Martínez-Romero, E., Aguirre-Noyola, J. L., Taco-Taype, N., Martínez-Romero, J., & Zuñiga-Dávila, D. (2020). Plant microbiota modified by plant domestication. Systematic and Applied Microbiology, 43(5), 126106. https://doi.org/10.1016/j.syapm.2020.126106
  20. Notredame, C., Higgins, D. G., & Heringa, J. (2000). TCoffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217. https://doi.org/10.1006/jmbi.2000.4042
  21. Núñez-Montero, K., & Barrientos, L. (2018). Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 7(4), 90. https://doi.org/10.3390/antibiotics7040090
  22. Prabahar, V., Dube, S., Reddy, G. S. N., & Shivaji, S. (2004). Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Systematic and Applied Microbiology, 27(1), 66–71. https://doi.org/10.1078/0723-2020-00249
  23. Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7
  24. Rihan, H. Z., Al-Issawi, M., & Fuller, M. P. (2017). Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions, 12(1), 143–157. https://doi.org/10.1080/17429145.2017.1308568
  25. Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7(2), 102. https://doi.org/10.1007/s13205-017-0736-3
  26. Sévin, D. C., Stählin, J. N., Pollak, G. R., Kuehne, A., & Sauer, U. (2016). Global metabolic responses to salt stress in fifteen species. PLoS One, 11(2), e0148888. https://doi.org/10.1371/journal.pone.0148888
  27. Shekhar Nautiyal, C. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  28. Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313–340. https://doi.org/10.1099/00207713-16-3-313
  29. Singh, J. P. (1988). A rapid method for determination of nitrate in soil and plant extracts. Plant and Soil, 110(1), 137–139. https://doi.org/10.1007/BF02143549
  30. Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 9, 1767. https://doi.org/10.3389/fmicb.2018.01767
  31. Song, Z., Ma, Z., Bechthold, A., & Yu, X. (2020). Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527. Applied Microbiology and Biotechnology, 104(10), 4445–4455. https://doi.org/10.1007/s00253-020-10565-4
  32. Song, Z., Xu, T., Wang, J., Hou, Y., Liu, C., Liu, S., & Wu, S. (2021). Secondary metabolites of the genus Amycolatopsis: Structures, bioactivities and biosynthesis. Molecules, 26(7), 1884. https://doi.org/10.3390/molecules26071884
  33. Styczynski, M., Biegniewski, G., Decewicz, P., Rewerski, B., Debiec-Andrzejewska, K., & Dziewit, L. (2022). Application of psychrotolerant antarctic bacteria and their metabolites as efficient plant growth promoting agents. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.772891
  34. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  35. Tirry, N., Joutey, N. T., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004
  36. Tistechok, S., Skvortsova, M., Luzhetskyy, A., Fedorenko, V., Parnikoza, I., & Gromyko, O. (2019). Antagonistic and plant growth promoting properties of actinomycetes from rhizosphere Deschampsia antarctica È. Desv. (Galindez Island, Antarctica). Ukrainian Antarctic Journal, 1(18), 169–177. https://doi.org/10.33275/1727-7485.1(18).2019.140
  37. Tistechok, S., Skvortsova, M., Mytsyk, Y., Fedorenko, V., Parnikoza, I., Luzhetskyy, A., & Gromyko, O. (2021). The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biology, 44(9), 1859–1868. https://doi.org/10.1007/s00300-021-02924-2
  38. Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396
  39. Vaishnav, A., Shukla, A. K., Sharma, A., Kumar, R., & Choudhary, D. K. (2019). Endophytic bacteria in plant salt stress tolerance: current and future prospects. Journal of Plant Growth Regulation, 38(2), 650–668. https://doi.org/10.1007/s00344-018-9880-1
  40. Wang, J., Leiva, S., Huang, J., & Huang, Y. (2018). Amycolatopsis antarctica sp. nov., isolated from the surface of an Antarctic brown macroalga. International Journal of Systematic and Evolutionary Microbiology, 68(7), 2348–2356. https://doi.org/10.1099/ijsem.0.002844
  41. Yamal, G., Sharmila, P., Rao, K. S., & Pardha-Saradhi, P. (2013). Yeast Extract Mannitol medium and its constituents promote synthesis of Au nanoparticles. Process Biochemistry, 48(3), 532–538. https://doi.org/10.1016/j.procbio.2013.02.011
  42. Yarzábal, L. A., Monserrate, L., Buela, L., & Chica, E. (2018). Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biology, 41(11), 2343–2354. https://doi.org/10.1007/s00300-018-2374-6
  43. Zhao, Y., Shi, R., Bian, X., Zhou, C., Zhao, Y., Zhang, S., Wu, F., Waterhouse, G. I. N., Wu, L.-Z., Tung, C.-H., & Zhang, T. (2019). Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Advanced Science, 6(8), 1802109. https://doi.org/10.1002/advs.201802109
  44. Zong, G., Fu, J., Zhang, P., Zhang, W., Xu, Y., Cao, G., & Zhang, R. (2022). Use of elicitors to enhance or activate the antibiotic production in streptomyces. Critical Reviews in Biotechnology, 42(8), 1260–1283. https://doi.org/10.1080/07388551.2021.1987856