- антарктичні aктиноміцети,
- біоконтроль,
- ризосферні бактерії,
- фітостимулювальні бактерії
Авторське право (c) 2023 Український антарктичний журнал
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Анотація
Малодосліджені біотопи можуть бути джерелом фітостимулювальних бактерій з унікальними властивостями. Оскільки Антарктика характеризується екстремальними умовами, то ця територія є перспективною для дослідження різних груп мікроорганізмів, зокрема й фітостимулювальних. Ми вважаємо, що в складних умовах Антарктиди бактерії могли отримати пристосування, які будуть цінні й для використання їх у сільському господарстві. Для дослідження властивостей антарктичного ізоляту нами було використано низку методів, а саме: молекулярні, для встановлення нуклеотидної послідовності генів; мікробіологічні, для дослідження культуральних властивостей, а також фітостимулювальних та антимікробних властивостей штаму. Штам Cq 72-27 належить до роду Amycolatopsis, він виявляв антагоністичний ефект проти фітопатогенних бактерій (Xanthomonas campestris pv. campestris IMB8003 та Bacillus subtilis ATCC 31324) та грибів (Alternaria alternata DSM 1102, Fusarium oxysporum ІМВ 54201 та Aspergillus niger ІМВ 16706). Крім того, штам Cq 72-27 солюбілізував фосфор і цинк та утворював нітрити й аміак. Інокуляція насіння пшениці його спорами сприяла проростанню та росту сіянців in vitro. Штам Amycolatopsis sp. Cq 72-27 може стати основою для біодобрив, оскільки продемонстрував здатність покращувати мінеральне живлення рослин та пригнічувати ріст фітопатогенних мікроорганізмів.
Посилання
- Bhakat, K., Chakraborty, A., & Islam, E. (2021). Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil. World Journal of Microbiology and Biotechnology, 37(3), 39. https://doi.org/10.1007/s11274-021-03003-8
- Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8
- Cueva-Yesquén, L. G., Goulart, M. C., Attili de Angelis, D., Nopper Alves, M., & Fantinatti-Garboggini, F. (2021). Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower. Frontiers in Plant Science, 11, 621740. https://doi.org/10.3389/fpls.2020.621740
- French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H., & Enders, L. (2021). Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants, 7(3), 256–267. https://doi.org/10.1038/s41477-020-00830-9
- Gallardo-Cerda, J., Levihuan, J., Lavín, P., Oses, R., Atala, C., Torres-Díaz, C., Cuba-Díaz, M., Barrera, A., & Molina-Montenegro, M. A. (2018). Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biology, 41(10), 1973–1982. https://doi.org/10.1007/s00300-018-2336-z
- Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and applied microbiology, 38(4), 237–245. https://doi.org/10.1016/j.syapm.2015.03.007
- Gohain, A., Manpoong, C., Saikia, R., & De Mandal, S. (2020). Actinobacteria: Diversity and biotechnological applications.In S. de Mandal, & P. Bhatt (Eds.), Recent Advancements in Microbial Diversity (1st ed., pp. 217–231). https://doi.org/10.1016/B978-0-12-821265-3.00009-8
- Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., & Zhou, Y. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 9(1), 1248. https://doi.org/10.1038/s41598-018-37838-3
- Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
- Igarashi, Y. (2004). Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica, 18(2), 63–66. https://doi.org/10.3209/saj.18_63
- Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., & De Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260. https://doi.org/10.1016/j.rse.2019.111260
- Khanna, K., Jamwal, V. L., Kohli, S. K., Gandhi, S. G., Ohri, P., Bhardwaj, R., Wijaya, L., Nasser Alyemeni, M., & Ahmad, P. (2019). Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant and Soil, 436(1), 325–345. https://doi.org/10.1007/s11104-019-03932-2
- Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Practical streptomyces genetics (Vol. 291). John Innes Foundation.
- Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. https://doi.org/10.3389/fmicb.2020.01216
- Li, R., Wang, M., Ren, Z., Ji, Y., Yin, M., Zhou, H., & Tang, S. K. (2021). Amycolatopsis aidingensis sp. nov., a halotolerant actinobacterium, produces new secondary metabolites. Frontiers in Microbiology, 12, 743116. https://doi.org/10.3389/fmicb.2021.743116
- Loc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., & Thu Ha, T. T. (2020). Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology, 11(1), 38–48. https://doi.org/10.1080/21501203.2019.1703839
- Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12(1), 51–53. https://doi.org/10.1128/jmbe.v12i1.249
- Majeed, A., Muhammad, Z., & Ahmad, H. (2018). Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Reports, 37(12), 1599–1609. https://doi.org/10.1007/s00299-018-2341-2
- Martínez-Romero, E., Aguirre-Noyola, J. L., Taco-Taype, N., Martínez-Romero, J., & Zuñiga-Dávila, D. (2020). Plant microbiota modified by plant domestication. Systematic and Applied Microbiology, 43(5), 126106. https://doi.org/10.1016/j.syapm.2020.126106
- Notredame, C., Higgins, D. G., & Heringa, J. (2000). TCoffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217. https://doi.org/10.1006/jmbi.2000.4042
- Núñez-Montero, K., & Barrientos, L. (2018). Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 7(4), 90. https://doi.org/10.3390/antibiotics7040090
- Prabahar, V., Dube, S., Reddy, G. S. N., & Shivaji, S. (2004). Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Systematic and Applied Microbiology, 27(1), 66–71. https://doi.org/10.1078/0723-2020-00249
- Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7
- Rihan, H. Z., Al-Issawi, M., & Fuller, M. P. (2017). Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions, 12(1), 143–157. https://doi.org/10.1080/17429145.2017.1308568
- Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7(2), 102. https://doi.org/10.1007/s13205-017-0736-3
- Sévin, D. C., Stählin, J. N., Pollak, G. R., Kuehne, A., & Sauer, U. (2016). Global metabolic responses to salt stress in fifteen species. PLoS One, 11(2), e0148888. https://doi.org/10.1371/journal.pone.0148888
- Shekhar Nautiyal, C. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16(3), 313–340. https://doi.org/10.1099/00207713-16-3-313
- Singh, J. P. (1988). A rapid method for determination of nitrate in soil and plant extracts. Plant and Soil, 110(1), 137–139. https://doi.org/10.1007/BF02143549
- Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 9, 1767. https://doi.org/10.3389/fmicb.2018.01767
- Song, Z., Ma, Z., Bechthold, A., & Yu, X. (2020). Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527. Applied Microbiology and Biotechnology, 104(10), 4445–4455. https://doi.org/10.1007/s00253-020-10565-4
- Song, Z., Xu, T., Wang, J., Hou, Y., Liu, C., Liu, S., & Wu, S. (2021). Secondary metabolites of the genus Amycolatopsis: Structures, bioactivities and biosynthesis. Molecules, 26(7), 1884. https://doi.org/10.3390/molecules26071884
- Styczynski, M., Biegniewski, G., Decewicz, P., Rewerski, B., Debiec-Andrzejewska, K., & Dziewit, L. (2022). Application of psychrotolerant antarctic bacteria and their metabolites as efficient plant growth promoting agents. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.772891
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
- Tirry, N., Joutey, N. T., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004
- Tistechok, S., Skvortsova, M., Luzhetskyy, A., Fedorenko, V., Parnikoza, I., & Gromyko, O. (2019). Antagonistic and plant growth promoting properties of actinomycetes from rhizosphere Deschampsia antarctica È. Desv. (Galindez Island, Antarctica). Ukrainian Antarctic Journal, 1(18), 169–177. https://doi.org/10.33275/1727-7485.1(18).2019.140
- Tistechok, S., Skvortsova, M., Mytsyk, Y., Fedorenko, V., Parnikoza, I., Luzhetskyy, A., & Gromyko, O. (2021). The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biology, 44(9), 1859–1868. https://doi.org/10.1007/s00300-021-02924-2
- Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396
- Vaishnav, A., Shukla, A. K., Sharma, A., Kumar, R., & Choudhary, D. K. (2019). Endophytic bacteria in plant salt stress tolerance: current and future prospects. Journal of Plant Growth Regulation, 38(2), 650–668. https://doi.org/10.1007/s00344-018-9880-1
- Wang, J., Leiva, S., Huang, J., & Huang, Y. (2018). Amycolatopsis antarctica sp. nov., isolated from the surface of an Antarctic brown macroalga. International Journal of Systematic and Evolutionary Microbiology, 68(7), 2348–2356. https://doi.org/10.1099/ijsem.0.002844
- Yamal, G., Sharmila, P., Rao, K. S., & Pardha-Saradhi, P. (2013). Yeast Extract Mannitol medium and its constituents promote synthesis of Au nanoparticles. Process Biochemistry, 48(3), 532–538. https://doi.org/10.1016/j.procbio.2013.02.011
- Yarzábal, L. A., Monserrate, L., Buela, L., & Chica, E. (2018). Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biology, 41(11), 2343–2354. https://doi.org/10.1007/s00300-018-2374-6
- Zhao, Y., Shi, R., Bian, X., Zhou, C., Zhao, Y., Zhang, S., Wu, F., Waterhouse, G. I. N., Wu, L.-Z., Tung, C.-H., & Zhang, T. (2019). Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Advanced Science, 6(8), 1802109. https://doi.org/10.1002/advs.201802109
- Zong, G., Fu, J., Zhang, P., Zhang, W., Xu, Y., Cao, G., & Zhang, R. (2022). Use of elicitors to enhance or activate the antibiotic production in streptomyces. Critical Reviews in Biotechnology, 42(8), 1260–1283. https://doi.org/10.1080/07388551.2021.1987856