Ukrainian Antarctic Journal

No 10-11 (2012): Ukrainian Antarctic Journal
Articles

Electrostatic mechanism of bromine release during ozone depletion events

K. Yu. Tkachenko
Institute of Geological Sciences of NAS of Ukraine, Kyiv
Published December 31, 2012
Keywords
  • ozone,
  • corona,
  • frost flowers,
  • wind,
  • ozone depletion events
How to Cite
Tkachenko, K. Y. (2012). Electrostatic mechanism of bromine release during ozone depletion events. Ukrainian Antarctic Journal, (10-11), 128-135. https://doi.org/10.33275/1727-7485.10-11.2012.295

Abstract

In the investigation we discuss boundary layer ozone depletion events associated with spring and polar sea ice zone, special role of bromine in these processes and a viewpoint of author concerning mechanisms of bromine release in “fair weather” conditions and under high wind.

References

  1. Alvarez-Aviles, L., Simpson, W.R., Douglas, T.A., Sturm, M., Perovich, D., & Domine, F. (2008). Frost flower chemical composition during growth and its implications for aerosol production and bromine activation. J. Geophys. Res., 113, D21304.
  2. Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, P.J., & Rasmussen, R.A. (1988). Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138–141.
  3. Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, P.J., & Rasmussen, R.A. (1988). Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138–141.
  4. Beaudon, E., & Moore, J. (2009). Frost flowers chemical signature in winter snow on Vestfonna ice cap (Nordaustlandet, Svaldbard). Cryosphere Discuss., 3, 159–180.
  5. Belova, E., Kirkwood, S., & Tammet, H. (2001). The effect of magnetic substorms on near-ground atmospheric current. Ann. Geophysicae, 18, 1623–1629.
  6. Bering, III E.A., Few, A.A., & Benbrook, J.R. (1998). The global electric circuit. Physics today, 51, 24–30.
  7. Bottenheim, J.W., Gallant, A.J., & Brice, K.A. (1986). Measurements of NOy species and O3 at 82N latitude. Geophys. Res. Lett., 13(2), 113–116.
  8. Bottenheim, J.W., Barrie, L.A., Atlas, E., Heidt, L.E., Niki, H., Rasmussen, R.A., & Shepson, P.B. (1990). Depletion of lower tropospheric ozone during Arctic spring: The polar sunrise experiment 1988. J. Geophys. Res., 95, 18555–18568.
  9. Burns, G.B, Tinsley, Br.A., French, W.J.R., Frank-Kamenetsky, A.V., Troshichev, O.A., & Bering, E.A. (2010). Measuring the atmospheric circuit from the antarctic plateau 38th COSPAR Scientific Assembly. Bremen, Germany. p.7.
  10. Deshpande, C.G., & Kamra, A.K. (2004). The atmospheric electric conductivity and aerosol measurements during fog over the Indian Ocean. Atm. Res., 70, 77–87.
  11. Duetsch, H.U., Graber, W., & Wyss, A. (1980). High ozone values near ground caused by silent discharge. Proceedings of Quadrennial International Ozone Symposium, Boulder, Co. Vol. 1. (A82-36401 17-46) Boulder, CO, International Association of Meteorology and Atmospheric Physics, 1981, pp. 626–631.
  12. Finlayson-Pitts, B., Wingen, L., & Wang, W. (2002). Multiplying Factors for Bromine Destruction of (Tropospheric ). Proceedings of Ozone DOE Atmospheric Sciences Program (ASP) Meeting, March 20, 2002, Albuquerque, NM.
  13. Foster, K.L., Plastridge, R.A., Bottenheim, J.W., Shepson, P.B., Finlayson-Pitts, B.J., & Spicer, C.W. (2001). The Role of Br2and BrCl in Surface Ozone Destruction at Polar Sunrise. Science, 291, 471–474.
  14. Frieß et al., Hollwedel, J., König-Langlo, G., Wagner, T., & Platt, U. (2004). Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region. J. Geophys. Res., 109, D06305.
  15. Gonda, T. (1994). Experimental studies of dendritic ice crystals growing from the vapor phase. In R. Takaki, Research of pattern formation, KTK Scientific Publishers, Tokyo. pp.171–130.
  16. Gordon, M., Biswas, S., Taylor, P.A., Hanesiak, J., Albarran-Melzer, M., & Fargey, S. (2010). Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada during the STAR project. Atmos.-ocean, 48, 81.
  17. Griffiths, R.F. (1975). The initiation of corona discharges from charged ice particles in a strong electric field. J. Electrostatics, 1(1), 3–13.
  18. Jones, A.E., Anderson, P.S., Begoin, M., Brough, N., Hutterli, M.A., Marshall, G.J., Richter, A., Roscoe, H.K. (2009). BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmos. chem. Phys., 9, 4639–4652.
  19. Kaleschke, L., Richter, A., Burrows, J.P., Afe, O., Heygster, G., Notholt, Rankin, A.M., Roscoe, H.K., Hollweddel, J., Wagner, T., & Jacobi, H.-W. (2004). Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophys. Res. Lett., 31, L16114.
  20. Kasatkina, E.A., Shumilov, O.I., Rycroft, M.J., Marcz, F., & Frank-Kamenetsky, A.V. (2009). Atmospheric electric field anomalies associated with solar flare/coronal mass ejection events and solar energetic charged particle “Ground Level Events”. Atmos. Chem. Phys. Discuss., 9, 21941–21958.
  21. Kirkman ,J.R., & Chalmers, J.A. (1957). Point discharge from an isolated point. J. Atm. Terr. Phys., 10(5-6), 258–265.
  22. Kumar, C.P.A., Paneerselvam, C., Nair, K.U., Jeeva, K., Selvaraj, C., Gurubaran, S., & Rajaram, R. (2008). Influence of coronal mass ejections on global electric circuit, Indian J. Radio & Space Physics, 37, 39–45.
  23. Large, M.I., & Pierce, E.T. (1957). The dependence of point-discharge currents on wind as examined by a new experimental approach. J. Atm. Terr. Phys., 10(5-6), 251–257.
  24. Libbrecht, K.G., & Tanusheva, V.M. (1998). Electrically Induced Morphological Instabilities in Free Dendrite Growth. Phys. Rev. Lett., 81(1), 176–179.
  25. Moortgat, G.K., Meller, R., & Schneider, W. (1993). Temperature dependence (256–296K) of the absorption cross sections of bromoform in the wavelength range 285–360 nm. In H. Niki & K.H. Becker (Eds.). Tropospheric Chemistry of Ozone in Polar Regions. NATO ASI Ser, Subser 1: Global Environmental Change, vol. 370. Springer Verlag, New York. – p. 359.
  26. Oltmans, S.J. (1981). Surface ozone measurements in clean air. J. Geophys. Res., 86, 1174–1180.
  27. Roscoe, H.K., & Roscoe, J. (2006). Polar tropospheric ozone depletion events observed in the International Geophysical Year of 1958. Atmos. Chem. Phys., 6, 3303–3314.
  28. Schmidt, D.S., Schmidt, R.A., & Dent, J.D. (1999). Electrostatic force in blowing snow. Boundary-Layer Meteor, 93, 29–45.
  29. Simpson, W.R., Carlson, D., Hoenninger, G., Douglas, T.A., Sturm, M., Perovich, D., & Platt, U. First-year sea-ice contact predicts bromine monoxide (BrO) levels better than potential frost flower contact. Atmos. Chem. Phys. Discuss., 6, 11051–11066.
  30. Sivak, S. Statistical analysis of solar geomagnetic storm occurrences. Massachusetts Institute of Technology Haystack Observatory: http://www.haystack.mit.edu/edu/pcr/Atmospheric/ssivak/results1
  31. Stromberg, I.M. (1971). Point discharge current measurements in a plantation of spruce trees using a new pulse technique. J. Atm. Terr. Phys., 33(3), 485-495.
  32. Sturges, W.T., Cota, G.F., & Buckley, P.T. (1992). Bromoform emission from Arctic ice algae. Nature, 358, 660–662.
  33. Style, R.W., & Worster, M.G. (2009). Frost flower formation on sea ice and lake ice. Geophys. Res. Lett., 36, L11501.
  34. Tkachenko, E.Y., & Kozachkov, S.G. (2011). Possible contribution of triboelectricity to snow–air interactions. Env. Chemistry.
  35. Tinsley, B.A., Burns, G.B., & Zhou, L. (2007). The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv. Space Research, 40, 1126-1139.
  36. Luk`yanova, R.Yu., Kruglov, A.V., Frank-Kameneczkij, A.V., Kotikov, A.V., Berns, G.B., & French, V.D. (2011). Sootnoshenie mezhdu potencialom ionosfery` i prizemny`m e`lektricheskim polem v yuzhnoj polyarnoj shapke [The ratio of the ionosphere potential and near-Earth electrical field in the southern polar cap]. Geomagnetizmiae`ronomiya, 51(3),387-396.
  37. Polyakov, V. (2008). Tajna metelochnoj antenny` [The secret of panicle antenna]. Klub radiolyubitelej rabotayushhix maloj moshhnost`yu http://www.qrp.ru/modules/myarticles/article.php?storyid=1
  38. Frenkel`, Ya.I. (2007). Teoriya yavlenij atmosfernogo e`lektrichestva [The theory of the phenomena of atmospheric electricity]. Moscow, KomKniga.