Ukrainian Antarctic Journal

No 6-7 (2008): Ukrainian Antarctic Journal
Articles

The interaction of chlororganic pollutants with snow cover in Antarctica

V. I. Bogillo
Institute of geological sciences of NAS of Ukraine, Kyiv
M. S. Bazylevska
Institute of geological sciences of NAS of Ukraine, Kyiv
Published December 15, 2008
Keywords
  • chlororganic pollutants,
  • Antarctic snow cover,
  • glaciers,
  • icebergs,
  • partitioning,
  • mass-exchange,
  • fluxes,
  • global warming
  • ...More
    Less
How to Cite
Bogillo, V. I., & Bazylevska, M. S. (2008). The interaction of chlororganic pollutants with snow cover in Antarctica. Ukrainian Antarctic Journal, (6-7), 119-134. https://doi.org/10.33275/1727-7485.6-7.2008.502

Abstract

The snow cover in Antarctica is the global sink for high-toxik chlororganic pollutants (COP) from their anthropogenic sources in tropics and midlatitudes. The snow surface/air (KIA) and mineral surface/water (Km) partition coefficients, and related changes of the enthalpies in these processes have been calculated for COPs identified in air, seawater and snow cover of Antarctica. Influence of COPs nature on the snow–air scavenging ratio. It has been shown that ice/air interface introduces main contribution into decrease of total COPs fugacity in snow cover in Central Antarctica, whereas the contribution of the organic phase in the cover is more essential one in the coastal regions. The desorption kinetics for COPs from the snow cover in boundary air layer corresponds to the kinetics for diagenesis of the cover, it can be predicted on basis of independent measurements of the diagenesis’ kinetics at different temperatures, and lifetime for COPs from
the cover increases with growth of log KIA value for the COPs. Maximal fluxes of DDTs and polychlorobiphenyls from air on the snow cover in Antarctica are close to the same fluxes in Arctic and to peak’ values for world production and usage of the COPs. The temporal decline for COPs level in the Antarctic snow cover reflects the global reduction of their production and usage in the Southern Hemisphere. Intensity of the fluxes for the COPs from air into the Antarctic snow cover is reduced during latest decades and the process is closed to the equilibrium now. Although the COPs amount deposited in Antarctic snow is low in comparison with their global emission, the glaciers and snow cover in coastal regions of the continent and the islands are to be essential local sources for the re-emission of COPs in coastal waters of ocean, lakes and in the boundary atmospheric layer.

References

  1. Aver`yanov, V. G. (1990). Glyacioklimatologiya Antarktidy`. [Glacioclimatology of Antarctica]. Gidrometeoizdat.
  2. Antarktika, Atlas okeanov. [Antarctica, Atlas of the Oceans]. (2005). SPb. MO RF, VMF, 6.
  3. Savel`ev, B. A. (1971). Fizika, ximiya i stroenie prirodny`x l`dov i merzly`x gorny`x porod. [Physics, chemistry and structure of natural ice and frozen rocks]. Moscow, Izd. Mosk. un-ta.
  4. Albert, M.R., & Shultz, E.F. (2002). Snow and firn properties and air-snow transport processes at Summit, Greenland. Atmos. Environ., 36, 2789-2797.
  5. Bales, R.C., Valdez, M.P., & Dawson, G.A. (1987). Gaseous deposition to snow: 2. Physical-chemical model for SO2 deposition. Journal of Geophysical Research, 92, 9789-9799.
  6. Beyer, A., Wania, F., Gouin, T. et al. (2002). Selecting internally consistent physical-chemical properties of organic compounds. Environ. Toxicol. Chem., 21, 941-953.
  7. Bogillo, V.I., & Bazylevska, M.S. (2007). Variations of organochlorine contaminants in Antarctica, in E. Mehmetli, B. Koumanova (Eds.), The fate of persistent organic pollutants in the environment. Berlin, Springer, 251-267.
  8. Cabanes, A., Legagneux, L., & Domine, F. (2003). Rate of evolution of the specific surface snow layers. Envin. Sci. Technol., 37, 661-666.
  9. Chiuchiolo, A.L., Dickhut, R.M., Cochran, M.A. et al. (2004). Persistent organic pollutants at the base of the Antarctic food web. Environ. Sci. Technol., 38, 3551-3557.
  10. Cook, A.J., Fox, A.J., Vaughan, D.G. et al. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541-544.
  11. DeFelice, T.P. (1999). Chemical composition of fresh snowfalls at Palmer Station, Antarctica. Atmos. Environ., 33, 155-161.
  12. Dickhut, R.M., Cincinelli, A., Cochran, M. et al. (2005). Atmospheric concentrations and air-water flux of organochlorine pesticides along the Western Antarctic Peninsula. Environ. Sci. Technol., 39, 465-470.
  13. Domine, F., Cabanes, A., Taillandier, A.S. et al. (2001). Specific surface area of snow samples determined by CH4 adsorption at 77K and estimated by optical microscopy and scanning electron microscopy. Environ. Sci. Technol., 35, 771-780.
  14. Domine, F., Salvatori, R., Legagneux, L. et al. (2006). Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Regions Sci. Technol., 46, 60-68.
  15. Goss, K.U., & Schwarzenbach, R.P. (1999). Empirical prediction of heats of vaporization and heats of adsorption of organic compounds. Environ. Sci. Technol., 33, 3390-3393.
  16. Goss, K.U., & Schwarzenbach, R.P. (2002). Adsorption of a diverse set of organic vapors on quartz, CaCO3, and б-Al2O3 at different relative humidities. J. Collooid. Interface Sci., 252, 31-41.
  17. Goss, K. U., Buschmann, J., & Schwarzenbach, R.P. (2004). Adsorption of organic vapors to air-dry soils: model predictions and experimental validation. Environ. Sci. Technol., 38, 3667-3673.
  18. Grannas, A.M., Shenson, P.B., & Filley, T.R. (2004). Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biochem. Cycl., 18.
  19. Gregor, D.J., Peters, A.J., Teixeira, C. et al. (1995). The historical residue trend of PCBs in the Agassiz Ice Cap, Ellesmere Island, Canada. Sci. Total Environ., 160, 117-126.
  20. Handbook of environmental degradation rates. (1991). Ed. by P.H. Howard, R.S. Boethling, W.F. Jarvis et al. New York, Lewis Publishers, Chelsea.
  21. Hansen, K.M., Halsall, C.J., & Christensen, J.H. (2006). A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snowpack. Environ. Sci. Technol., 40, 2644-2652.
  22. Herbert, B.M.J., Villa, S., Halsall, C.J. et al. (2005). Rapid changes in PCB and OC pesticide concentrations in Arctic snow. Environ. Sci. Technol., 39, 2998-3005.
  23. Hermanson, M.H., Matthews, K.A., Iaksson, E. et al. (2002). Conginer profiles of polychlorinated biphenyls in firn and ice from Lomonosovfonna, Svalbard. Amer. Geophys. Union Fall Meet. San Francisco. December, 2002.
  24. Lakaschus, S., Weber, K., Wania, F. et al. (2002). The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica. Environ. Sci. Technol., 36, 138-145.
  25. Legrand, M., & Mayewski, P. (1997). Glaciochemistry of polar ice cores: a review. Rev. Geophys., 35, 219-243.
  26. Lei, Y.D., & Wania, F. (2004). Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ., 38, 3557-3571.
  27. Lukowski, A.B., & Ligowski, R. (1987). Cumulation of chlororganic insecticides by Antarctic marine diatoms. Polish Polar Research, 8, 167-177.
  28. Mackay, D., Shiu, W.Y., & Ma, K.C. (1995). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. New York, Lewis Publ., BocaRaton, 1-5.
  29. Nguyen, T.H., Goss, K.-U., Ball, W.P. (2005). Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ. Sci. Technol., 39, 913-924.
  30. Platts, J.A., Butina, O., Abraham, M.H. et al. (1999). Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci., 39, 835-845.
  31. Risebrough, R.W., Walker, W.I., Schmidt, T.T. et al. (1976). Transfer of chlorinated biphenyls to Antarctica. Nature, 364, 738-739.
  32. Roth, C.M., Goss, K.-U., Schwarzenbach, R.P. (2002). Adsorption of a diverse set of organic vapors on the bulk water surface. J. Colloid. Interface Sci., 252, 21-30.
  33. Roth, C.M., Goss, K.-U., Schwarzenbach, R.P. (2004). Sorption of diverse organic vapors to snow. Environ. Sci. Technol., 38, 4078-4084.
  34. Scheringer, M., Wegmann, F., Fenner, K. et al. (2000). Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model. Environ. Sci. Technol., 34, 1842-1850.
  35. Schwarzenbach, R.P., Gshwend, P.M., & Imboden, D.M. (2003). Environmental organic chemistry. New York, Wiley.
  36. Sun, L.G., Yin, X.B., Pan, C.P. et al. (2005). A 50-years record of dichloro-diphenyl-trichloroethanes and hexachlorocyclohexanes in lake sediments and penguin droppings on King George Island, Maritime Antarctic. J. Environ. Sci., 17, 899-905.
  37. Tanabe, S., Hidaka, H., & Tatsukawa, R. (1983). PCBs and chlorinated hydrocarbon pesticides in antarctic atmosphere and hydrosphere. Chemosphere, 12, 277-288.
  38. Valsaraj, K.J. (1988). Binding constants for non-polar hydrophobic organics at the air-water interface: comparison of experimental and predicted values. Chemosphere, 17, 2049-2053.
  39. Vaughan, D.G. (2006). Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic and Alpine Research, 38, 147-152.
  40. Wania, F., & Mackay, D. (1993). Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio., 22, 10-18.
  41. Wania, F. (1997). Modelling the behaviour of non-polar organic chemicals in an ageing snow pack. Chemosphere, 35, 2345-2363.
  42. Wania, F., Hoff, J.T., Jia, C.Q. et al. (1998). The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals. Environmental Pollution, 102, 25-41.