Ukrainian Antarctic Journal

No 16 (2017): Ukrainian Antarctic Journal
Articles

Changes of the surface air temperature in the 20th – 21st centuries in the Antarctic Peninsula region based on climate models’ datа

S.V. Krakovska
Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
L.A. Pysarenko
Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
Published December 29, 2017
Keywords
  • Antarctic Peninsula,
  • climate change,
  • air temperature,
  • climate projections,
  • atmosphere-ocean general circulation models
How to Cite
Krakovska, S., & Pysarenko, L. (2017). Changes of the surface air temperature in the 20th – 21st centuries in the Antarctic Peninsula region based on climate models’ datа. Ukrainian Antarctic Journal, (16), 52-65. https://doi.org/10.33275/1727-7485.16.2017.62

Abstract

This paper is dedicated to surface air temperature dynamics in the Antarctic region where the most rapid warming on the Earth was recorded during the second half of the 20th century. As air temperature is one of the main characteristics of climate system and climate model is the only tool to forecast future climate change, temperature data of Atmospheric-Ocean Global Circulation Models (AOGCMs) and measurements at the Ukrainian Antarctic Akademik Vernadsky station (former British Faraday station) were used for this research. Therefore, the main objectives of the research were to verify of 10 AOGCMs and their ensemble in comparison with observational data in period 1947-2016 at the station; to extract and to analyze climate projections till the end of the 21st century for the Antarctic Peninsula region based on scenarios of the 4th (SRES) and 5th (RCP) Reports of the Intergovernmental Panel on Climate Change (IPCC). Overall 93 model runs of 10 AOGCMs were analyzed. Comparative analysis between SRES and RCP IPCC scenarios of air temperature change has been performed and demonstrated, as a result, an absence of strong contradiction between the respective scenarios in surface air temperature projections both on global scale and in the Antarctic region. The verification of 10 AOGCMs runs has been carried out with 70-year observational data from Ukrainian Antarctic Akademik Vernadsky station where temperature has been increasing with rate of 0.51°С/10 years. Similar coefficients of linear trend and high correlation between measured air temperature at the station and in AOGCMs have confirmed that these climate models can be used for obtaining air temperature projections in the future. As a conclusion, analysis of climate projections for 21st century of 10 AOGCMs and their ensembles has demonstrated further temperature increase for all the above scenarios. The most rapid warming in the studied region has been expected for “pessimistic” A2 scenario with average temperature rise 0.29°С/10 years, “balanced” A1B scenario has projected 0.26°C/10 years and “optimistic” B1 – 0.15°C/10 years.

References

  1. Krakovskaia S.V. 1998. Meteorolohicheskie rekordy i analiz temperaturnoho rezhima stantsii Faradei- Akademik Vernadsky [Meteorological records and analysis of the temperature regime of the Faraday-Akademik Vernadsky station]. Buleten Ukrainskogo antarktychnogo tsentru [Bulletin of the Ukrainian antarctic center], 2, 64-69.
  2. Krakovska, S.V., Gnatiuk, N.V., Shpytal, T.M., Palamarchuk, L.V. 2016. Projections of surface air temperature changes based on data of regional climate models' ensemble in the regions of Ukraine in the 21st century. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu, 268, 33-44.
  3. Krakovska, S.V., Palamarchuk, L.V., Shedemenko, I.P., Diukel, H.O., Gnatiuk, N.V. 2011. Proekcii zmin pryzemnoi temperatury povitria za danymy ansamblu regionalnyh klimatychnykh modelei u regionakh Ukrainy v XXI stolitti [Projections of surface air temperature changes based on data of regional climate models' ensemble in the regions of Ukraine in the 21st century]. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu [Scientific proceedings of the Ukrainian research hydrometeorological institute], 268, 33-44.
  4. Martazinova, V.F., Klock., S.V. 2012. Suchasnyi ta maibutnii stan serednovichnoi temperatury povitria pivnichnoi chastyny Antarktychnogo pivostrova zahidnogo sektora Antarktydy [The current and future state of the mean annual temperature of the northern Antarctic Peninsula in West sector Antarctica]. Naukovi pratsi Ukrainskoho naukovodoslidnoho hidrometeorolohichnoho instytutu [Scientific proceedings of the Ukrainian research hydrometeorological institute], 263, 5-15.
  5. Tymofeyev, V.E. 2007. Dinamica sovremennoho poteplieniia v raione Antarcticheskoho poluostrova [Dynamics of modern warming in the Antarctic Peninsula region]. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu [Scientific proceedings of the Ukrainian research hydrometeorological institute], 256, 112-120.
  6. Tymofeyev, V.E. 2013. Mnogoletnee izmenenie temperatury vozdukha v raione Antarkticheskogo poluostrova I ego prichiny [Multi-years' changes in the air temperature at the Antarctic Peninsula and the possible reasons]. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu [Scientific proceedings of the Ukrainian research hydrometeorological institute], 264, 9-17.
  7. Automatic weather stations-2017. Space Science and Engineering Center, UW-Madison; Antarctic Meteorological Research Center and Automatic Weather Station program. URL: http://amrc.ssec.wisc.edu/aws/index.html.
  8. Bokhorst, S., Huiskes, A., Convey, P., Sinclair, B. J., Lebouvier, M., Van de Vijver, B., Wall, D. H. 2011. Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biology, 34, 1421-1435. https://doi.org/10.1007/s00300-011-0997-y.
  9. Bromwich, D. H., Fogt, R. L. 2004. Strong Trends in the Skill of the ERA-40 and NCEP-NCAR Reanalyses in the High and Midlatitudes of the Southern Hemisphere, 1958-2001. Journal of Climate, 17 (23), 4603-4619. https://doi.org/10.1175/3241.1.
  10. Christensen, J. H. 2013. Regional climate science: Findings of IPCC AR5 WG1. International Conference on Regional Climate - CORDEX 2013. Brussels, 4-7 November, 2013. URL:http://wcrp.ipsl.jussieu.fr/cordex2013_documents/ICRC2013_draft_agenda.pdf .
  11. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. URL: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf
  12. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. URL:http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.
  13. Convey, P., Bindschadler, R., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A. Mayewski, P.A., Summerhayes, C.P.,Turner, G. and The Acce consortium. 2009. Review Antarctic climate change and the environment. Antarctic Science, 21(6), 541-563. https://doi.org/10.1017/S0954102009990642.
  14. Convey, P., Smith R. I. L.2005. Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology. https://doi.org/10.1007/s11258-005-9022-2.
  15. Coupled Model Intercomparison Project phase 3. URL: https://esgf-node.llnl.gov/search/cmip3/.
  16. Covey, C., AchutaRao, K. M., Cubasch, U., Jones P., Lambert, S.J., Mann, M. E., Phillips, T. J., Taylor K. E. 2003. An overview of results from the Coupled Model Intercomparison Project. Global and Climate change, 37, 103-133. https://doi.org/10.1016/S0921-8181(02)00193-5.
  17. Ding, Q., Steig, E. J. 2013. Temperature Change on the Antarctic Peninsula Linked to the Tropical Pacific. Journal of Climate, 26, 7570-7585. URL: https://doi.org/10.1175/JCLI-D-12-00729.1. https://doi.org/10.1175/JCLI-D-12-00729.1.
  18. HadCRUT4. Met Office Hadley Centre observations datasets. URL:https://www.metoffice.gov.uk/hadobs/hadcrut4.
  19. History of Signy. British Antarctic Survey. URL: https://www.bas.ac.uk/about/about-bas/our-history/britishresearch-stations-and-refuges/signy-h.
  20. Hogg, I.D.,Cary, S.C., Convey, P., Newsham, K. K., O'Donnell, A. G., Adams, B. J., Aislabie, J., Frati, F., Stevens, M. I., Wall, D. H. 2006. Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biology &Biochemistry, 38, 3035-3040. https://doi.org/10.1016/j.soilbio.2006.04.026.
  21. IPCC Special Report. 2000. Emissions Scenarios. Summary for Policymakers. URL: https://ipcc.ch/pdf/specialreports/spm/sres-en.pdf.
  22. Krakovska, S.V., Djukel, G.A. The observed Antarctic Peninsula warming during the 20th century in the AOGCMs and the 21st century projections for the region. International Polar Year Conference. Oslo, 8-12 June, 2010. URL: https://www.researchgate.net/publication/306038235_The_observed_Antarctic_Peninsula_warming_during_the_20th_century_in_the_AOGCMs_and_the_21st_century_projections_for_the_region.
  23. Legnani, W.E., Canziani, P. O., Barletta, Gil, J., Ibañez, F. 100 years of surface weather observations at Orcadas Antarctic Station: a look at variability and change in the Antarctic Peninsula. 8th International Conference on Southern Hemisphere Meteorology and Oceanography. Foz do Iguaçu, 24-28 April, 2006. URL:https://www.researchgate.net/publication/258821220_100_YEARS_OF_SURFACE_WEATHER_OBSERVATIONS_AT_ORCADAS_ANTARCTIC_STATION_A_LOOK_AT_VARIABILITY_AND_CHANGE_IN_THE_ANTARCTIC_PENINSULA.
  24. Model output described in the 2007 IPCC Fourth Assessment Report (SRES scenarios), multi-year means. Data Distribution Centre. URL:http://www.ipcc-data.org/sim/gcm_clim/SRES_AR4/index.html.
  25. Parnikoza, I., Convey, P., Dykyy, I., Trokhymets, V., Milinevsky, G., Tyschenko, O., Inozemtseva, D., Kozeretska, I. 2009. Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biology,15, 1685-1693. https://doi.org/10.1111/j.1365-2486.2009.01906.x.
  26. Station Surface Data. Reader Data set. URL:https://legacy.bas.ac.uk/met/READER/surface/stationpt.html
  27. Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin J. 2013. Antarctic climate change and the environment: an update. Cambridge University Press, 1-23. https://doi.org/10.1017/S0032247413000296.
  28. Turner, J., Bindschadler, R. Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P., Summerhayes, C. 2009. Antarctic Climate Change and the Environment. Cambridge: Victoire Press.
  29. Van de Berg, W.J., Van den Broeke, M.R., Reijmer, C.H., Van Meijgaard, E. 2005. Characteristics of the Antarctic surface mass balance, 1958-2002, using a regional atmospheric climate model. Annals of Glaciology, 41, 97-104. URL:http://www.staff.science.uu.nl/~broek112/home.php_files/Publications_MvdB/2005_VanDeBerg_AnnGlac.pdf. https://doi.org/10.3189/172756405781813302.
  30. Van Lipzig, N. P. M., Van Meijgaard, E., Oerlemans, J. 2002. The spatial and temporal variability of the surface mass balance in Antarctica: results from a regional atmospheric climate model. International Journal of Climatology, 22, 1197-1217. https://doi.org/10.1002/joc.798.
  31. Weatherly, J. W. 2003. Sensitivity of Antarctic Precipitation to Sea Ice Concentrations in a General Circulation Model. Journal of Climate, 17, 3214-3223. https://doi.org/10.1175/1520-0442(2004)017<3214:SOAPTS>2.0.CO;2.
  32. Yudakova, O. I., Tyrnov, V. S., Kunakh, V. A., Kozeretskaya, I. A., Parnikoza, I. Yu. 2016. Adaptation of the Seed Reproduction System to Conditions of Maritime Antarctic in Deschampsia antarctica E. Desv. Russian Journal of Developmental Biology, 47(3), 138-146. https://doi.org/10.1134/S1062360416030073.