Ukrainian Antarctic Journal

No 1 (2021): Ukrainian Antarctic Journal
Articles

Precipitation phase transition in austral summer over the Antarctic Peninsula

A. Chyhareva
Ukrainian Hydrometeorological Institute, State Service of Emergencies of Ukraine and National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
I. Gorodetskaya
Centre for Environmental and Marine Studies, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
S. Krakovska
Ukrainian Hydrometeorological Institute, State Service of Emergencies of Ukraine and National Academy of Sciences of Ukraine, Kyiv, 03028, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
D. Pishniak
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
P. Rowe
NorthWest Research Associates, Redmond, Washington, 98052, USA
Published July 28, 2021
Keywords
  • Antarctic Peninsula,
  • Ukrainian Antarctic Akademik Vernadsky station,
  • Chilean station Professor Julio Escudero,
  • precipitation phase,
  • ERA5,
  • Polar-WRF,
  • air temperature,
  • atmospheric pressure
  • ...More
    Less
How to Cite
Chyhareva, A., Gorodetskaya, I., Krakovska, S., Pishniak, D., & Rowe, P. (2021). Precipitation phase transition in austral summer over the Antarctic Peninsula. Ukrainian Antarctic Journal, (1), 32-46. https://doi.org/10.33275/1727-7485.1.2021.664

Abstract

Investigating precipitation phase transitions is crucial for improving our understanding of precipitation formation processes and impacts, particularly in Polar Regions. This study uses observational data and numerical modelling to investigate precipitation phase transitions in the western and northern Antarctic Peninsula (AP) during austral summer. The analysis is based on the ERA5 reanalysis product, dynamically downscaled using the Polar-WRF (Polar Weather Research and Forecasting) model, evaluated using regular meteorological observations and additional measurements made during the Year of Polar Prediction special observing period. We analyse three cases of extra-tropical cyclones bringing precipitation with phase transitions, observed at the Chilean station Professor Julio Escudero (King George Island, north of the AP) and the Ukrainian Antarctic Akademik Vernadsky station (western side of the AP) during the first week of December 2018. We use observed and modelled near-surface air temperature and pressure, precipitation amount and type, and vertical temperature profiles. Our results show that precipitation type (snow or rain) is well-represented by ERA5 and Polar-WRF, but both overestimate the total amount of precipitation. The ERA5 daily variability and vertical air temperature profile are close to the observed, while Polar-WRF underestimates temperature in the lower troposphere. However, ERA5 underestimates the temperature inversion, which is present during the atmospheric river event, while Polar-WRF represents that inversion well. The average weekly temperature, simulated with Polar-WRF, is lower compared to ERA5. The Polar-WRF fraction of snow in the total precipitation amount is higher than for ERA5; nevertheless, Polar-WRF represents the precipitation phase transition better than ERA5 during the event, associated with an atmospheric river. These case studies demonstrated a relationship between specific synoptic conditions and precipitation phase transitions at the AP, evaluated the ability of the state-of-the-art reanalysis and regional climate model to represent these events, and demonstrated the added value of combined analysis of observations from the western and northern AP, particularly for characterizing precipitation during synoptic events affecting the entire AP.

References

  1. Abrams, M., Crippen, R., & Fujisada, H. (2020). ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sensing, 12(7), 1156. https://doi.org/10.3390/rs12071156
  2. Agosta, C., Fettweis, X., & Datta, R. (2015). Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. The Cryosphere, 9(6), 2311–2321. https://doi.org/10.5194/tc-9-2311-2015
  3. Bozkurt, D., Bromwich, D. H., Carrasco, J., Hines, K. M., Maureira, J. C., & Rondanelli, R. (2020). Recent near-surface temperature trends in the Antarctic Peninsula from observed, reanalysis and regional climate model data. Advances in Atmospheric Sciences, 37, 477–493. https://doi.org/10.1007/s00376-020-9183-x
  4. Bozkurt, D., Bromwich, D. H., Carrasco, J., & Rondanelli, R. (2021). Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: Contrasting global and regional climate model simulations. Climate Dynamics, 56, 3853–3874. https://doi.org/10.1007/s00382-021-05667-2
  5. Bromwich, D.H., Hines, K.M., & Bai, L.S. (2009). Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. Journal of Geophysical Research: Atmospheres, 114(D08), 122. https://doi.org/10.1029/2008JD010300
  6. Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., & Van Lipzig, N. P. M. (2012). Tropospheric clouds in Antarctica. Reviews of Geophysics, 50 (1), (RG1004). https://doi.org/10.1029/2011RG000363
  7. Bromwich, D. H., Otieno, F. O., Hines, K. M., Manning, K. W., & Shilo, E. (2013). Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. Journal of Geophysical Research: Atmospheres, 118(2), 274–292. https://doi.org/10.1029/2012jd018139
  8. Bromwich, D. H., Werner, K., Casati, B., Powers, J. G., Gorodetskaya, I. V., Massonnet, F., Vitale, V., Heinrich, V. J., Liggett, D., Arndt, S., Barja, B., Bazile, E., Carpentier, S., Carrasco, J. F., Choi, T., Choi, Y., Colwell, S. R., Cordero, R. R., Gervasi, M., Haiden, T., Hirasawa N., Inoue, J., Jung, T., Kalesse, H., Kim, S.-J., Lazzara, M. A., Manning, K. W., Norris, K., Park, S.-J., Reid, P., Rigor, I., Rowe, P. M., Schmithüsen, H., Seifert, P., Sun, Q., Uttal, T., Zannoni, M., & Zou, X. (2020). The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 101(10), E1653-E1676. https://doi.org/https://doi.org/10.1175/BAMS-D-19-0255.1
  9. Carrasco, J. F. & Cordero, R. R. (2020). Analyzing Precipitation Changes in the Northern Tip of the Antarctic Peninsula during the 1970–2019 Period. Atmosphere, 11(12), 1270. https://doi.org/10.3390/atmos11121270
  10. Chyhareva, A., Krakovska, S., & Pishniak, D. (2019). Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part II: wet/dry indices. Ukrainian Antarctic Journal, 2(19), 47–63. https://doi.org/10.33275/1727-7485.2(19).2019.151
  11. Dai, A. (2008). Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophysical Research Letters, 35(12), L12802. https://doi.org/10.1029/2008GL033295
  12. Deb, P., Orr, A., Hosking, J. S., Phillips, T., Turner, J., Bannister, D., Pope, J. O., & Colwell, S. (2016). An assessment of the Polar Weather Research and Forecasting (WRF) model representation of near-surface meteorological variables over West Antarctica. Journal of Geophysical Research: Atmospheres, 121(4), 1532–1548. https://doi.org/10.1002/2015jd024037
  13. Dudhia, J. (1989). Numerical study of convection observed during the Winter Monsoon Experiment Using a Mesoscale Two–Dimensional Model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  14. Gonzalez, S., Vasallo, F., Recio-Blitz, C., Guijarro, J. A., & Riesco, J. (2018). Atmospheric Patterns over the Antarctic Peninsula. Journal of Climate, 31(9), 3597—3608. https://doi.org/10.1175/JCLI-D-17-0598.1
  15. Gorodetskaya, I. V., Silva, T., Schmithüsen, H. & Hirasawa, N. (2020a). Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica. Advances in Atmospheric Sciences, 37, 455–476. https://doi.org/10.1007/s00376-020-9221-8
  16. Gorodetskaya, I. V., Rowe, P. M., Kalesse, H., Silva, T., Hirasawa, N., Schmithüsen, H., Seifert, P., Park, S.-J., Choi, Y., & Cordero, R. R. (2020b). The vertical structure of atmospheric rivers and their impact in the Atlantic sector of Antarctica from the Year of Polar Prediction observations. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20313. https://doi.org/10.5194/egusphere-egu2020-20313
  17. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Ho rányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Sche pers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999—2049. https://doi.org/10.1002/qj.3803
  18. Hines, K. M., & Bromwich, D. H. (2008). Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I: Greenland ice sheet meteorology. Monthly Weather Review, 136(6), 1971–1989. https://doi.org/10.1175/2007MWR2112.1
  19. Hines, K. M., Bromwich, D. H., Bai, L.-S., Barlage, M., & Slater, A. G. (2011). Development and testing of Polar WRF. Part III: Arctic Land. Journal of Climate, 24(1), 26–48. https:// doi.org/10.1175/2010JCLI3460.1
  20. Hines, K. M., Bromwich, D. H., Wang, S.-H., Silber, I., Verlinde, J., & Lubin, D. (2019). Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Atmospheric Chemistry and Physics, 19(19), 12431–12454. https://doi.org/10.5194/acp-19-12431-2019
  21. IMBIE team, Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., ... Wouters, B. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219–222. https://doi.org/10.1038/s41586-018-0179-y
  22. Janjić, Z. I. (1994). The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945. https://doi.org/10.1175/1520-0493-(1994)122<0927:TSMECM>2.0.CO;2
  23. Janjić, Z. I. (2002). Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp.
  24. Jones, M. E., Bromwich, D. H., Nicolas, J. P., Carrasco, J., Plavcová, E., Zou, X., & Wang, A. S.-H. (2019). Sixty Years of Widespread Warming in the Southern Middle and High Latitudes (1957—2016). Journal of Climate, 32(20), 6875–6898. https://doi.org/10.1175/JCLI-D-18-0565.1
  25. Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43(1), 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  26. Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B. (2016). Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. Journal of Geophysical Research: Atmospheres, 121(8), 4162–4176. https://doi.org/10.1002/2015JD024699
  27. King, J. C., Gadian, A., Kirchgaessner, A., Kuipers Munneke, P., Lachlan-Cope, T. A., Orr, A., Reijmer, C., van den Broeke, M. R., van Wessem, J. M., & Weeks, M. (2015). Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. Journal of Geophysical Research: Atmospheres, 120(4), 1335—1347. https://doi.org/10.1002/2014JD022604.
  28. Krakovskaia, S. V., & Pirnach, A. M. (2000). Theoretical study formation and development of antarctic cloudiness under different intensity of ice and cloud droplet nucleation. AIP Conference Proceedings, 534 (1), 467. https://doi.org/10.1063/1.1361908
  29. Krakovskaia, S., & Pirnach, A. (2003). Mesoscale and Microphysical Features of Frontal Rainbands in the Deep Depression of Explosive Cyclone Type over the Antarctic Peninsula. Ukrainian Antarctic Journal, 1, 85—92. https://doi.org/10.33275/1727-7485.1.2003.629
  30. Lachlan-Cope, T., Listowski, C., & O’Shea, S. (2016). The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations. Atmospheric Chemistry and Physics, 16 (24), 15605–15617. https://doi.org/10.5194/acp-16-15605-2016
  31. Listowski, C., & Lachlan-Cope, T. (2017). The microphysics of clouds over the Antarctic Peninsula — Part 2: modelling aspects within Polar-WRF. Atmospheric Chemistry and Physics, 17(17), 10195–10221. https://doi.org/10.5194/acp-17-10195-2017
  32. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. Journal of Geophysical Research: Atmospheres, 102 (D14), 16663–16682. https://doi.org/10.1029/97JD00237
  33. NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003
  34. Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Sto ne, G., & Wille, J. D. (2017). January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 8, 15799. https://doi.org/10.1038/ncomms15799
  35. Pishniak, D., & Beznoshchenko, B. (2020). Improving the detailing of atmospheric processes modelling using the Polar WRF model: a case study of a heavy rainfall event at the Akademik Vernadsky station. Ukrainian Antarctic Journal, 2, 26—41. https://doi.org/10.33275/1727-7485.2.2020.650
  36. Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M. (2019). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the USA, 116(4), 1095—1103. https://doi.org/10.1073/pnas.1812883116
  37. Rowe, P. M, Sepulveda, E., Neshyba, S. P., Caballero, M., Damiani, A., & Cordero, R. (2018). The radiative impact of clouds over the Antarctic Peninsula and Southern Ocean. 15th Conference on Cloud Physics/Atmospheric Radiation, 9–13 July 2018, Vancouver, BC. Retrieved September 20, 2020, from https://ams.confex.com/ams/15CLOUD15ATRAD/webprogram/Paper347761.html
  38. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., & Huang, X.-Y. (2019). A Description of the Advanced Research WRF Model Version 4 (No, NCAR/TN-556+STR), 145. https://doi.org/10.5065/1dfh-6p97
  39. Tewari, M., Chen, F., Wang, W., Dudhia, J., Le Mone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., & Cuenca, R. H. (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 14.2A. Retrieved September 20, 2020, from https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm
  40. Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136(12), 5095–5115. https://doi.org/10.1175/2008MWR2387.1
  41. Turner, J., Lachlan-Cope, T., Thomas, J. P., & Colwell, S. R. (1995). The synoptic origins of precipitation over the Antarctic Peninsula. Antarctic Science, 7(3), 327—337. https://doi.org/10.1017/S0954102095000447
  42. Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., & Berne, A. (2021). Present and Future of Rainfall in Antarctica. Geophysical Research Letters, 48(8), e2020GL092281. https://doi.org/10.1029/2020GL092281
  43. Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., & Codron, F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911–916. https://doi.org/10.1038/s41561-019-0460-1
  44. Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts, J. T. M., & Codron, F. (2021). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research:Atmospheres, 126(8), e2020JD033788. https://doi.org/10.1029/2020JD033788
  45. Yuter, S. E., Kingsmill, D. E., Nance, L. B., & Löffler-Mang, M. (2006). Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow. Journal of Applied Meteorology and Climatology, 45(10), 1450–1464. https://doi.org/10.1175/JAM2406.1