Ukrainian Antarctic Journal

No 1 (2021): Ukrainian Antarctic Journal
Articles

Calculation of United Quality Latent Indices of Deschampsia antarctica plants adaptability of different origin grown in vitro

N. Miryuta
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
I. Parnikoza
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine; National University of "Kyiv-Mohyla Academy", Kyiv, 04655, Ukraine
O. Poronnik
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
G. Myryuta
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
M. Rojek-Jelonek
University of Silesia in Katowice, Katowice, 40-032, Poland
E. Dykyi
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
V. Kunakh
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
Published July 28, 2021
Keywords
  • Deschampsia antarctica,
  • in vitro plant culture,
  • the United Quality Latent Index of plant adaptability,
  • probabilistic relation correlation models of different indices
How to Cite
Miryuta, N., Parnikoza, I., Poronnik, O., Myryuta, G., Rojek-Jelonek, M., Dykyi, E., & Kunakh, V. (2021). Calculation of United Quality Latent Indices of Deschampsia antarctica plants adaptability of different origin grown in vitro. Ukrainian Antarctic Journal, (1), 56-81. https://doi.org/10.33275/1727-7485.1.2021.667

Abstract

The research was to develop and describe in detail the algorithm for calculating the United Quality Latent Index (UQLI, Iqi) of plant adaptability from the collection of Deschampsia antarctica Ė. Desv. genotypes obtained from seeds collected at different sites in the Argentine Islands region, the maritime Antarctic, and grown in vitro at the laboratory conditions. Genome size and genetic distances by ISSR and IRAP markers according to data from published articles were used as basic indices of initial genetic heterogeneity for analyzed plant genotypes. To assess individual adaptability indices for eleven D. antarctica genotypes, we used measurement of the leaf length morphometric index and determination of the flavonoids content by rutin and the content of photosynthetic pigments. The spectra of reserve and protective proteins in leaves were investigated by polyacrylamide gel electrophoresis. To obtain the United Quality Latent Index of Adaptability (Iqi, UQLI), the method of extreme grouping was used. The estimation of Iqi (UQLI) was performed using pairwise comparisons of indices from differences sets for each pair of genotypes. We developed and described in detail the algorithm for Iqi estimation for eleven D. antarctica genotypes. As an example of application, correlation models of probability relations of the indices are presented. To evaluate the complex adaptability for eleven D. antarctica genotypes grown in vitro we used developed algorithm for the UQLI calculation. The individuality of the adaptive portrait for all studied genotypes under in vitro cultivation conditions was shown. The influence of basic genetic characteristics (genome size and genetic distances) on auxin metabolism-related indices of leaf length and flavonoid content was shown. Such effect may be carried out by genetic characteristics both individually and together, probably via auxin metabolism. Among the eight genotypes researched, we distinguish four different variants by correlation models and two (positive and negative) by the general Iqi value. Thus the Iqi (UQLI) is proposed to describe a large number of source data at different organization levels which characterize sample genotypes by reducing the dimensions to one dimensionless number. This genotypes’ individuality and the peculiarities of their grouping by Iqi should be taken into account when doing experimental studies using these genotypes as model plants, especially in experiments studying the regulation of productivity and the effect of the various exogenous factors, etc.

References

  1. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Zoshchuk, S. A., Andreev, I. O., Badaeva, E. D., Kunakh, V. A., & Muravenko, O. V. (2015). Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS ONE, 10(9), e0138878. https://doi.org/10.1371/journal.pone.0138878
  2. Andreev, I. O., Spiridonova, E. V., Kyryachenko, S. S., Parnikoza, I. Yu., Maidanyuk, D. N., Volkov, R. A., Kozeretska, I. A., & Kunakh, V. A. (2010). Population-genetic analysis of Deschampsia antarctica from two regions of maritime antarctica. Moscow University Biological Sciences Bulletin, 65(4), 208–210. https://doi.org/10.3103/S0096392510040243
  3. Ayvazyan, S. A., Buchstaber, V. M., Yenyukov, I. S., & Meshalkin, L. D. (1989). Prikladnaja statistika. Klassifikacija i snizhenie razmernosti [Applied statistics. Classification and dimensionality reduction]. Finansy i statistika. (in Russian)
  4. Bai, C., Alverson, W. S., Follansbee, A., & Waller, D. M. (2012). New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of Botany, 110(8), 1623–1629. https://doi.org/10.1093/aob/mcs222
  5. Bauman, E. V., & Moskalenko, N. E. (2008). Methods of extremal grouping of the fractional parameters. Automation and Remote Control, 69, 1965–1972. https://doi.org/10.1134/S0005117908110131
  6. Corder, G. W., & Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step Approach. (2nd ed.). Wiley.
  7. Ermakov, A. I. (Ed.). (1987). Metody biokhimicheskogo issledovanija rastenij [Methods of biochemical research of plants]. Agropromizdat. (in Russian)
  8. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  9. Grotewold, E. (Ed.). (2006). The Science of flavonoids. Springer Science. https://doi.org/10.1007/978-0-387-28822-2
  10. Iordachescu, M., & Imai, R. (2008). Trehalose biosynthesis in response to abiotic stresses. Journal of Integrative Plant Biology, 50(10), 1223–1229. https://doi.org/10.1111/j.1744-7909.2008.00736.x
  11. Kreps, J. A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., & Harper, J. F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130(4), 2129–2141. https://doi.org/10.1104/pp.008532
  12. Lambers, H., Chapin, III S. F., & Pons, T. L. (2008). Plant Physiological Ecology. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-78341-3
  13. Lee, J., Noh, E. K., Choi, H.-S., Shin, S. C., Park, H., & Lee, H. (2012). Transcriptome sequencing of the Antarctic vascular plant Deschampsia Antarctica Desv. under abiotic stress. Planta, 237(3), 823–836. https://doi.org/10.1007/s00425-012-1797-5
  14. Makarenko, O. A., & Levitsky, A. P. (2013). Physiological functions of flavonoids in plants. Physiology and biochemistry of cultivated plants, 45(2), 100–112. (in Russian)
  15. Miryuta, N., Poronnik, O., Parnikoza, I., Grahov, V., Myryuta, A., Kozub, N., Sozinov, I., & Kunakh, V. (2016). Conservation of complex adaptability uniqueness in different Deschampsia antarctica Desv. plant genotypes under standardized growth condition in vitro. Ukrainian Antarctic Journal, 15, 60–80. (in Ukrainian). https://doi.org/10.33275/1727-7485.15.2016.93
  16. Miryuta, N. Yu., Parnikoza, I. Yu., Poronnik, O. O., Myryuta, G. Yu., & Kunakh, V. A. (2017). Deschampsia antarctica E. Desv. with different chromosome numbers cultivated in vitro. Probabilistic relations of three adaptability indices with genome size. Factors of experimental evolution of organisms, 20, 293–298. (in Ukrainian). https://doi.org/10.7124/FEEO.v20.782
  17. Miryuta, N., Smykla, J., & Parnikoza, I. (2019a). Algorithm for the United Quality Latent Index of the plant adaptability and its application field in monitoring of Deschampsia antarctica È. Desv. populations. Ukrainian Antarctic Journal, 1(18), 152–168. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/168303/12-Miryuta.pdf?sequence=1
  18. Miryuta, N., Wojciechowski, K., & Parnikoza, I. (2019b). Calculation of the external factors influence indices on plants and its application to Deschampsia antarctica Ė. Desv. populations. Ukrainian Antarctic Journal, 2(19), 97–116. https://doi.org/10.33275/1727-7485.2(19).2019.155
  19. Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/pp.108.129791
  20. Navrotska, D. O., Twardowska, M. O., Andreev, I. O., Parnikoza, I. Yu., Betekhtin, A. A., Zahrychuk, O. M., Drobyk, N. M., Hasterok, R., & Kunakh, V. A. (2014). New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine Islands of the Maritime Antarctic region. Ukrainian Antarctic Journal, 13, 185–191.
  21. https://doi.org/10.33275/1727-7485.13.2014.226
  22. Navrotska, D. O., Andreev, I. O., Parnikoza, I. Yu., Spiridonova, K. V., Poronnik, O. O., Miryuta, N. Yu., Myryuta, G. Yu., Zahrychuk, O. M., Drobyk, N. M., & Kunakh, V. A. (2017). Comprehensive characterization of cultivated in vitro Deschampsia antarctica E. Desv. plants with different chromosome numbers. Cytology and Genetics, 51(6), 422–431. https://doi.org/10.3103/S009545271706010X
  23. Parnikoza, I., Miryuta, N., Ozheredova, I., Kozeretska, I., Smykla, J., Kunakh, V., & Convey, P. (2015). Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic). Polar Biology, 38(9), 1401–1411. https://doi.org/10.1007/s00300-015-1704-1
  24. Parnikoza, I. Yu., Miryuta, N. Yu., Royek, M., Betekhtin, A. A., Poronnik, O. O., Miryuta, G. Yu., Navrotska, D. O., Hasterok, R., & Kunakh, V. A. (2017). Deschampsia antarctica E. Desv. plants with different chromosome number cultivated in vitro. Relations between genome size and two adaptability indices. Factors of experimental evolution of organisms, 20, 304–309. (in Ukrainian). https://doi.org/10.7124/FEEO.v20.784
  25. Pollard, J. H. P. (1982). Spravochnik po vychislitelnym metodam statistiki [A handbook of numerical and statistical techniques]. Finansy i statistika. (in Russian)
  26. Poronnik, O. O., Parnikoza, I. Yu., Miryuta, N. Yu., Myryuta, G. Yu., Grahov, V. P., Navrotska, D. O., & Kunakh, V. A. (2017). Deschampsia antarctica E. Desv. plants with different chromosome number cultivated in vitro. Plants length and flavonoids in vitro culture and in nature. Factors of experimental evolution of organisms, 20, 310–313. (in Ukrainian). https://doi.org/10.7124/FEEO.v20.785
  27. Poronnik, O., Miryuta, N., Ivannikov, R., Myiryuta, G., Korchevska, V., Parnikoza, I., & Kunakh, V. (2019, May 14–16). Long-term action of ultraphiolet an influence on different adaptability parameters of Deshampsia antarctica É. Desv. plants under cultivation in vitro [Conference presentation abstract]. IX International Antarctic Conference, Kyiv, Ukraine.
  28. Scion Image: http://scion-image.software.informer.com/4.0/
  29. Shalygo, N. V., Domanskaya, I. N., Radyuk, M. S., Shcherbakov, R. A., & Dremuk, I. A. (2012). Accumulation of hydrogen peroxide and functioning of defense system in overwatered barley seedlings. Russian Journal of Plant Physiology, 59(6), 748–756. https://doi.org/10.1134/S1021443712050147 (in Russian)
  30. Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410–417. https://doi.org/10.1016/s1369-5266(03)00092-x
  31. Tchuraev, R. N. (2006a). Epigenetics: gene and epigene networks in ontogeny and phylogeny. Genetika, 42(9), 1276–1296. (in Russian). https://doi.org/10.1134/S1022795406090122
  32. Tchuraev, R. N. (2006b). General principles of organization and laws of functioning in governing gene networks. In N. Kolchanov, R. Hofestädt, Milanesi, L. (Eds.), Bioinformatics of Genome Regulation and Structure II (pp. 367–377). Springer, Science Media Inc. https://doi.org/10.1007/0-387-29455-4_35
  33. Van Loon, L. C. (Ed.) (2009). Plant Innate Immunity (Vol. 51). Academic Press.
  34. Volkov, R. A., Kozeretska, I. A., Kyryachenko, S. S., Andreev, I. O., Maidanyuk, D. N., Parnikoza, I. Yu., & Kunakh, V. A. (2010). Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Science, 4(3), 469–478. https://doi.org/10.1016/j.polar.2010.04.011
  35. Zahrychuk, O. M., Drobyk, N. M., Kozeretska, I. A., Parnikoza, I. Yu., & Kunakh, V. A. (2011–2012). Introduction in culture in vitro of Deschampsia antarctica Desv. (Poaceae) from two regions of Maritime Antarctica. Ukrainian Antarctic Journal, 10–11, 289–295. (in Ukrainian). https://doi.org/10.33275/1727-7485.10-11.2012.309
  36. Zubairova, U. S., Penenko, A. V., & Nikolaev, S. V. (2012). Modeling of plant tissue growth and development with L-systems. Vavilov Journal of Genetics and Breeding, 16(4/1), 816–824. (in Russian)
  37. Zubairova, U. S., Golushko, S. K., Penenko, A. V., & Nikolaev, S. V. (2014). An L-system for modeling flat unidimensionally growing flat plant tissues. Vavilov Journal of Genetics and Breeding, 18(4/2), 945–952. (in Russian)