Ukrainian Antarctic Journal

Vol 20 No 1(24) (2022): Ukrainian Antarctic Journal
Articles

Observation of the ionosphere by ionosondes in the Southern and Northern hemispheres during geospace events in October 2021

M. Reznychenko
Institute of Ionosphere, National Academy of Sciences of Ukraine, Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine
O. Bogomaz
Institute of Ionosphere, National Academy of Sciences of Ukraine, Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
D. Kotov
Institute of Ionosphere, National Academy of Sciences of Ukraine, Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine
T. Zhivolup
Institute of Ionosphere, National Academy of Sciences of Ukraine, Ministry of Education and Science of Ukraine, Kharkiv, 61001, Ukraine
O. Koloskov
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine; tate Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
V. Lisachenko
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, 61002, Ukraine
Published August 4, 2022
Keywords
  • electron density,
  • F2-layer peak height,
  • geomagnetic storm,
  • ionospheric model,
  • ionospheric vertical sounding
How to Cite
Reznychenko, M., Bogomaz, O., Kotov, D., Zhivolup, T., Koloskov, O., & Lisachenko, V. (2022). Observation of the ionosphere by ionosondes in the Southern and Northern hemispheres during geospace events in October 2021. Ukrainian Antarctic Journal, 20(1(24), 18-30. https://doi.org/10.33275/1727-7485.1.2022.686

Abstract

The paper presents the results of ionospheric observations performed over the Ukrainian Antarctic Akademik Vernadsky station and Millstone Hill (USA). Ionospheric parameters such as peak electron density and height (hmF2 and NmF2) in October 2021 are shown and discussed. The results of the comparative analysis between observations and predictions of the International Reference Ionosphere 2016 (IRI-2016) model are presented. The main objectives of this work are an investigation of the ionosphere response to space weather effects in the Northern and Southern hemispheres in the American longitudinal sector using ionosondes located at the Vernadsky station and near the magnetically conjugate region – Millstone Hill, and a comparison of observations with the model. The F2-layer peak height was calculated from ionograms obtained by ionosonde using subsequent electron density profile inversion. Diurnal variations of hmF2 and NmF2 were calculated using a set of sub-models of the IRI-2016 model for comparison with experimental results. A strong negative response of the ionosphere to the moderate geomagnetic storm on October 12, 2021 was revealed over the Vernadsky station and Millstone Hill. During October 21–31, 2021, the gradual night-to-night increase in NmF2 (by a factor of ~2) was observed over the Vernadsky station. It was found that the IRI hmF2 sub-models (SHU-2015 and AMTB-2013) provide a relatively good agreement with the observed variations of hmF2 in the daytime and nighttime for almost the entire investigated period over both the Vernadsky station and Millstone Hill. The largest deviations for both IRI hmF2 sub-models occurred during the nighttime of geomagnetically disturbed periods. The IRI NmF2 submodels (URSI and CCIR) generally agree with the observations. However, observations and model predictions differ somewhat in the geomagnetically disturbed periods. According to the results of the standard deviation calculations, it cannot be concluded that any of the IRI-2016 sub-models is better than the others. The hypotheses on the possible reasons for the differences in the modeled and observed variations of hmF2 and NmF2 are proposed and discussed in the frame of well-known ionospheric storms’ mechanisms. The results obtained in this paper demonstrate the peculiarities of the ionosphere in different hemispheres of the American longitude sector under geomagnetically quiet and disturbed conditions and provide one more validation of the modern empirical international reference models of the ionosphere.

References

  1. Altadill, D., Magdaleno, S., Torta, J. M., & Blanch, E. (2013). Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Advances in Space Research, 52(10), 1756–1769. https://www.doi.org/10.1016/j.asr.2012.11.018
  2. Bellchambers, W. H., & Piggott, W. R. (1958). Ionospheric measurements made at Halley Bay. Nature, 182, 1596–1597. https://doi.org/10.1038/1821596a0
  3. Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. (2017). International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather, 15(2), 418–429. https://doi.org/10.1002/2016SW001593
  4. Bogomaz, O. V., Kotov, D. V., Shulha, M. O., & Gorobets, M. V. (2019a). Comparison of the F2-layer peak height variations obtained by ionosonde and incoherent scatter radar. Bulletin of the National Technical University “KhPI”. Series: Radiophysics and ionosphere, 25(1350), 58–61. Retrieved March 10, 2022, from http://iion.org.ua/article/bulletin-25/
  5. Bogomaz, O. V., Shulha, M. O., Kotov, D. V., Zhivolup, T. G., Koloskov, A. V., Zalizovski, A. V., Kashcheyev, S. B., Rez nychenko, A. I., Hairston, M. R., & Truhlik, V. (2019b). Ionosphere over Ukrainian Antarctic Akademik Vernadsky station under minima of solar and magnetic activities, and daily insolation: case study for June 2019. Ukrainian Antarctic Journal, 19, 84—93. https://doi.org/10.33275/1727-7485.2(19).2019.154
  6. Dudeney, J. R., & Piggott, W. R. (1978). Antarctic ionospheric research. Antarctic Research Series, 29, 200–235.
  7. Fuller-Rowell, T. J., Codrescu, M. V., Araujo-Pradere, E., & Kutiev, I. (1998). Progress in developing a storm-time ionospheric correction model. Advances in Space Research, 22(6), 821–827. https://doi.org/10.1016/S0273-1177(98)00105-7
  8. Fuller-Rowell, T. J., Araujo-Pradere, E., & Codrescu, M. V. (2000). An empirical ionospheric storm-time correction model. Advances in Space Research, 25(1), 139–146. https://doi.org/10.1016/S0273-1177(99)00911-4
  9. Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Reinisch, B. W., Huang, X., & Paznukhov, V. V. (2008). The ARTIST 5. AIP Conference Proceedings, 974(1), 150–159. https://doi.org/10.1063/1.2885024
  10. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. (1994). What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99(A4), 5771—5792. https://doi.org/10.1029/93JA02867
  11. Horvath, I., & Essex, E. A. (2003). The Weddell sea anomaly observed with the TOPEX satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 65(6), 693–706. https://doi.org/10.1016/S1364-6826(03)00083-X
  12. Huang, X., & Reinisch, B. W. (1996). Vertical electron density profiles from the Digisonde network. Advances in Space Research, 18(6), 121–129. https://doi.org/10.1016/0273-1177(95)00912-4
  13. International Radio Consultative Committee (CCIR). (1967). Atlas of ionospheric characteristics. (Report No. 340). International Telecommunication Union.
  14. Koloskov, O. V., Kashcheyev, A. S., Zalizovski, A. V., Kashcheyev, S. B., Budanov, O. V., Charkina, O. V., Pikulik, I. I., Lysachenko, V. M., Sopin, A. O., & Reznychenko, A. I. (2019). New digital ionosonde developed for Vernadsky Station. In Book of Abstracts “IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation” (pp. 170–171). SI NASC. http://uac.gov.ua/internationalcooperation/mak/mak-2019/
  15. Kotov, D. V., Richards, P. G., Truhlík, V., Bogomaz, O. V., Shulha, M. O., Maruyama, N., Hairston, M., Miyoshi, Y., Kasahara, Y., Kumamoto, A., Tsuchiya, F., Matsuoka, A., Shinohara, I., Hernández-Pajares, M., Domnin, I. F., Zhivolup, T. G., Emelyanov, L. Ya., & Chepurnyy, Ya. M. (2018). Coincident observations by the Kharkiv IS radar and ionosonde, DMSP and Arase (ERG) satellites, and FLIP model simulations: Implications for the NRLMSISE-00 hydrogen density, plasmasphere, and ionosphere. Geophysical Research Letters, 45(16), 8062–8071. https://doi.org/10.1029/2018GL079206
  16. Rees, D., & Fuller-Rowell, T. J. (1992). Modelling the response of the thermosphere/ionosphere system to time dependent forcing. Advances in Space Research, 12(6), 69–87. https://doi.org/10.1016/0273-1177(92)90041-U
  17. Reinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Bibl, K., Lisysyan, I. A., Cheney, G. P., Huang, X., Kitrosser, D. F., Paznukhov, V. V., Luo, Y., Jones, W., Stelmash, S., Hamel, R., & Grochmal, J. (2009). New Digisonde for research and monitoring applications. Radio Science, 44(1), RS0A24. https://doi.org/10.1029/2008RS004115
  18. Reinisch, B. W., & Galkin, I. A. (2011). Global ionospheric radio observatory (GIRO). Earth, Planets and Space, 63, 377–381. https://doi.org/10.5047/eps.2011.03.001
  19. Richards, P. G., Schunk, R. W., & Sojka, J. J. (1983). Largescale counterstreaming of H+ and He+ along plasmaspheric flux tubes. Journal of Geophysical Research, 88(A10), 7879–7886. https://doi.org/10.1029/JA088iA10p07879
  20. Richards, P. G., Buonsanto, M. J., Reinisch, B. W., Holt, J., Fennelly, J. A., Scali, J. L., Comfort, R. H., Germany, G. A., Spann, J., Brittnacher, M., & Fok, M.-C. (2000). On the relative importance of convection and temperature to the behavior of the ionosphere in North America during January 6–12, 1997. Journal of Geophysical Research: Space Physics, 105(A6), 12763–12776. https://doi.org/10.1029/1999JA000253
  21. Rishbeth, H. (1998). How the thermospheric circulation affects the ionospheric F2-layer. Journal of Atmospheric and Solar-Terrestrial Physics, 60(14), 1385–1402. https://doi.org/10.1016/S1364-6826(98)00062-5
  22. Rush, C., Fox, M., Bilitza, D., Davies, K., McNamara, L., Stewart, F., & Pokempner, M. (1989). Ionospheric mapping – an update of foF2 coefficients. Telecommunication Journal, 56(3), 179–182.
  23. Shinbori, A., Otsuka, Y., Sori, T., Tsugawa, T., & Nishioka, M. (2022). Statistical behavior of large-scale ionospheric disturbances from high latitudes to mid-latitudes during geomagnetic storms using 20-yr GNSS-TEC data: Dependence on season and storm intensity. Journal of Geophysical Research: Space Physics, 127(1), e2021JA029687. https://doi.org/10.1029/2021JA029687
  24. Shubin, V. N. (2015). Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Advances in Space Research, 56(5), 916–928. https://doi.org/10.1016/j.asr.2015.05.029
  25. Shulha, M. О., Kotov, D. V., Bogomaz, O. V., Zhivolup, T. G., Koloskov, O. V., Lisachenko, V. M., & Hairston, M. (2019). Multi-instrumental and modeling investigation of ionospheric response to weak geomagnetic storm of 21–23 March 2017 over the Ukrainian Antarctic station and magnetically conjugate region. In Book of Abstracts “IX International Antarctic Conference dedicated to the 60th anniversary of the signing of the Antarctic Treaty in the name of peace and development of international cooperation” (pp. 185–186). SI NASC. http://uac.gov.ua/international-cooperation/mak/mak-2019/
  26. Zalizovski, A. V., Kashcheiev, A. S., Kashcheiev, S. B., Koloskov, A. V. , Lisachenko, V. N., Paznukhov, V. V., Pikulik, I. I., Sopin, A. A., & Yampolski, Yu. M. (2018). A prototype of a portable coherent ionosonde. Space Science and Technology, 24(3), 10–22. https://doi.org/10.15407/knit2018.03.010