Ukrainian Antarctic Journal

Vol 20 No 1(24) (2022): Ukrainian Antarctic Journal
Articles

Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data

A. Grytsai
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
G. Milinevsky
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, China; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Yu. Andrienko
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
A. Klekociuk
Antarctic Climate Program, Australian Antarctic Division, Kingston, 7050, Australia; Department of Physics, University of Adelaide, Adelaide, 5005, Australia
Yu. Rapoport
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; Space Radio-Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
O. Ivaniha
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine
Published August 4, 2022
Keywords
  • ozone hole,
  • planetary wave,
  • quasi-stationary wave,
  • total ozone column,
  • zonal wave numbers
How to Cite
Grytsai, A., Milinevsky, G., Andrienko, Y., Klekociuk, A., Rapoport, Y., & Ivaniha, O. (2022). Antarctic planetary wave spectrum under different polar vortex conditions in 2019 and 2020 based on total ozone column data. Ukrainian Antarctic Journal, 20(1(24), 31-43. https://doi.org/10.33275/1727-7485.1.2022.687

Abstract

We examine the zonal wavenumber spectrum of planetary (Rossby) waves in the atmosphere above Antarctica in each of two contrasting years: in 2019, when there was a sudden stratospheric warming (SSW), and in 2020 when the Antarctic stratospheric vortex was unusually strong and long-lived. The ozone hole (OH) is developed over Antarctica in spring, and its state depends on disturbances of the stratospheric polar vortex by planetary waves (PW). Our analysis uses data on the distribution of the total ozone column from the Ozone Monitoring Instrument on the Aura satellite and ground-based measurements from the Dobson spectrophotometer at the Ukrainian Antarctic Akademik Vernadsky station in Antarctica. The 2019 SSW strongly displaced the Antarctic vortex off-pole and aided the breakdown of the ozone hole. The SSW occurred during the peak activity of quasi-stationary planetary wave-1, which was enhanced at the time of the warming by the large amplitude of traveling wave-2. In the spring of 2020, the stratospheric polar vortex was relatively undisturbed, allowing the OH area to attain a size close to its historical maximum. A factor in 2020 that aided the stability of the vortex was the relatively small amplitude of wave-1. The
stability was maintained despite regular periods when the amplitude of traveling wave-2 attained or even exceeded values around the time of the SSW in 2019. We find that a factor contributing to the differences between the wave effects in the two years is the dynamics of the quasi-stationary wave-1. Anticorrelation of the wave-1 and wave-2 amplitudes near the edge of the vortex was clearly observed in 2020, which can be caused by the transfer of planetary wave energy between different spectral wave components, unlike the situation in 2019.

References

  1. Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., & Manney, G. L. (2003). Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophysical Research Letters, 30(12). https://doi.org/10.1029/2003GL017117
  2. Anstey, J. A., Banyard, T. P., Butchart, N., Coy, L., Newman, P. A., Osprey, S., & Wright, C. J. (2021). Prospect of increased disruption to the QBO in a changing climate. Geophysical Research Letters, 48(15), e2021GL093058. https://doi.org/10.1029/2021GL093058
  3. Baldwin, M. P., & Dunkerton, T. J. (1998). Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophysical Research Letters, 25(17), 3343—3346. https://doi.org/10.1029/98GL02445
  4. Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., & Pedatella, N. M. (2021). Sudden stratospheric warmings. Reviews of Geophysics, 59(1), e2020RG000708. https://doi.org/10.1029/2020RG000708
  5. Bodeker, G. E., & Kremser, S. (2021). Indicators of Antarctic ozone depletion: 1979 to 2019. Atmospheric Chemistry and Physics, 21(7), 5289—5300. https://doi.org/10.5194/acp-21-5289-2021
  6. Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a Sudden Stratospheric Warming. Journal of Climate, 31(6), 2337—2344. https://doi.org/10.1175/JCLI-D-17-0648.1
  7. Butler, A. H., & Domeisen, D. I. V. (2021). The wave geometry of final stratospheric warming events. Weather and Climate Dynamics, 2, 453—474. https://doi.org/10.5194/wcd-2-453-2021
  8. Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63—76. https://doi.org/10.5194/essd-9-63-2017
  9. Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20(3), 449—469. https://doi.org/10.1175/JCLI3996.1
  10. Dennison, F., McDonald, A., & Morgenstern, O. (2017). The evolution of zonally asymmetric austral ozone in a chemistry—climate model. Atmospheric Chemistry and Physics, 17, 14075—14084. https://doi.org/10.5194/acp-17-14075-2017
  11. Domeisen, D. I., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57(1), 5—47. https://doi.org/10.1029/2018RG000596
  12. Evtushevsky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2019). Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52(7—8), 4027—4055. https://doi.org/10.1007/s00382-018-4354-5
  13. Grytsai, A. V. (2011). Planetary wave peculiarities in Antarctic ozone distribution during 1979—2008. International Journal of Remote Sensing, 32(11), 3139—3151. https://doi.org/10.1080/01431161.2010.541518
  14. Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., & Milinevsky, G. P. (2007a). Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 25(2), 361—374. https://doi.org/10.5194/angeo-25-361-2007
  15. Grytsai, A., Evtushevsky, A., Milinevsky, G., & Agapitov, A. (2007b). Longitudinal position of the quasi-stationary wave extremes over the Antarctic region from the TOMS total ozone. International Journal of Remote Sensing, 28(6), 1391—1396. https://doi.org/10.1080/01431160600768021
  16. Grytsai, A. V., Evtushevsky, O. M., & Milinevsky, G. P. (2008). Anomalous quasi-stationary planetary waves over the Antarctic region in 1988 and 2002. Annales Geophysicae, 26(5), 1101—1108. https://doi.org/10.5194/angeo-26-1101-2008
  17. Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., & Stone, K. (2017). Evolution of the eastward shift in the quasistationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 17, 1741—1758. https://doi.org/10.5194/acp-17-1741-2017
  18. Grytsai, A. V., Milinevsky, G. P., & Ivaniga, O. I. (2018). Total ozone over Vernadsky Antarctic station: ground-based and satellite measurements. Ukrainian Antarctic Journal, 1(17), 65—72. https://doi.org/10.33275/1727-7485.1(17).2018.33
  19. Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., & Kyrölä, E. (2012). Ozone zonal asymmetry and planetary wave characterization during Antarctic spring. Atmospheric Chemistry and Physics, 12(5), 2603—2614. https://doi.org/10.5194/acp-12-2603-2012
  20. Kanzawa, H., & Kawaguchi, S. (1990). Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988. Geophysical Research Letters, 17(1), 77—80. https://doi.org/10.1029%2FGL017i001p00077
  21. Klekociuk, A. R., Tully, M. B., Krummel, P. B., Evtushevsky, O., Kravchenko, V., Henderson, S.I., Alexander, S.P., Querel, R. R., Nichol, S., Smale, D., Milinevsky, G. P., Grytsai, A., Fraser, P. J., Xiangdong, Zh., Gies, H. P., Schofield, R., & Shanklin, J. D. (2019). The Antarctic ozone hole during 2017. Journal of Southern Hemisphere Earth Systems Science, 69(1), 29—51. https://doi.org/10.1071/ES19019
  22. Klekociuk, A. R., Tully, M. B., Krummel, P. B., Henderson, S. I., Smale, D., Querel, R., Nichol, S., Alexander, S. P., Fraser, P. J., & Nedoluha, G. (2021). The Antarctic ozone hole during 2018 and 2019. Journal of Southern Hemisphere Earth Systems Science, 71(1), 66—91. https://doi.org/10.1071/ES20010
  23. Klekociuk, A. R., Tully, M. B., Krummel, P. B., Henderson, S. I., Smale, D., Querel, R., Nichol, S., Alexander, S. P., Fraser, P. J., & Nedoluha, G. (2022). The Antarctic ozone hole during 2020. Journal of Southern Hemisphere Earth Systems Science, 72(1), 19—37. https://doi.org/10.1071/ES21015
  24. Lecouffe, A., Godin-Beekmann, S., Pazmiño, A., & Hauchecorne, A. (2022). Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979—2020. Atmospheric Chemistry and Physics, 22(6), 4187—4200. https://doi.org/10.5194/acp-22-4187-2022
  25. Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Zweers D. C. S., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., ... & Wargan, K. (2018). The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8), 5699—5745. https://doi.org/10.5194/acp-18-5699-2018
  26. Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z. D., Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi, C., Comer, R., Coy, l., Dowdy, A., Garreaud, R. G., Newman, P., & Wang, G. (2021). The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bulletin of the American Meteorological Society, 102(6), E1150—E1171. https://doi.org/10.1175/BAMS-D-20-0112.1
  27. Liu, G., Hirooka, T., Eguchi, N., & Krüger, K. (2022). Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019. Atmospheric Chemistry and Physics, 22(5), 3493—3505. https://doi.org/10.5194/acp-22-3493-2022
  28. Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Gry tsai, A., Shulga, V., & Ivaniha, O. (2020). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 41 (19), 7530–7540. https://doi.org/10.1080/2150704X.2020.1763497
  29. Randel, W. J. (1988). The seasonal evolution of planetary waves in the southern hemisphere stratosphere and troposphere. Quarterly Journal of the Royal Meteorological Society, 114(484), 1385—1409. https://doi.org/10.1002/qj.49711448403
  30. Rao, J., Garfinkel, C. I., White, I. P., & Schwartz, C. (2020). The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. Journal of Geophysical Research — Atmospheres, 125(14), e2020JD032723. https://doi.org/10.1029/2020JD032723
  31. Roy, R., Kuttippurath, J., Lefèvre, F., Raj, S., & Kumar, P. (2022). The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002. Theoretical and Applied Climatology, 149, 119—130. https://doi.org/10.1007/s00704-022-04031-6
  32. Smale, D., Strahan, S. E., Querel, R., Frieß, U., Nedoluha, G. E., Nichol, S. E., Robinson, J., Boyd, I., Kotkamp, M., Gomez, R. M., Murphy, M., Tran, H., & Mc Gaw, J. (2021). Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8° S, 166.7° E) during the 2019 Antarctic stratospheric sudden warming. Tellus B: Chemical and Physical Meteorology, 73(1), 1—18. https://doi.org/10.1080/16000889.2021.1933783
  33. Stone, K. A., Solomon, S., Kinnison, D. E., & Mills, M. J. (2021). On recent large Antarctic ozone holes and ozone recovery metrics. Geophysical Research Letters, 48(22), e2021GL095232. https://doi.org/10.1029/2021GL095232
  34. Tyrrell, N. L., Koskentausta, J. M., & Karpechko, A. Yu. (2022). Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases. Weather and Climate Dynamics, 3, 45—58. https://doi.org/10.5194/wcd-3-45-2022
  35. Varotsos, C. (2002). The Southern Hemisphere ozone hole split in 2002. Environmental Science and Pollution Research, 9(6), 375—376. https://doi.org/10.1007/BF02987584
  36. Varotsos, C. (2003). What is the lesson from the unprecedented event over Antarctica in 2002? Environmental Science and Pollution Research, 10(2), 80—81. https://doi.org/10.1007/BF02980093
  37. Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens, D. R., Kristoffersen, S., & Alken, P. (2020). September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects. Geophysical Research Letters, 47(1), e2019GL086577. https://doi.org/10.1029/2019GL086577
  38. Zhang, C., Grytsai, A., Evtushevsky, O., Milinevsky, G., An drienko, Y., Shulga, V., Klekociuk, A., Rapoport, Y., & Han, W. (2022). Rossby waves in total ozone over the Arctic in 2000—2021. Remote Sensing, 14(9), 2192. https://doi.org/10.3390/rs14092192
  39. Zhang, Y., Li, J., & Zhou, L. (2017). The relationship between polar vortex and ozone depletion in the Antarctic stratosphere during the period 1979—2016. Advances in Meteorology, ID 3078079. https://doi.org/10.1155/2017/3078079