- Extreme Low Frequency,
- global climate change,
- lightning detection network,
- space weather,
- transient event
Copyright (c) 2023 Ukrainian Antarctic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The main objective of this study is to evaluate the effectiveness of the CARISMA (Canadian Array for Realtime Investigations of Magnetic Activity) – Akademik Vernadsky station (65.25°S 64.25°W, Vernadsky) Extremely Low Frequency (ELF) induction magnetometer network as a planetary monitoring system for thunderstorm activity, with observation sites located in the Arctic and Antarctic regions, respectively. To achieve this, daily ELF records from Vernadsky and Fort Churchill (FCHU, 58.76°N 94.08°W) collected in January 2022 were processed and analyzed. For CARISMA, data from the FCHU site were used due to the better signal-to-noise ratio. The horizontal magnetic components of Schumann signals obtained at Vernadsky and FCHU underwent spectral and polarization processing. ELF transients were identified, and subsequent geolocation was performed as well. Both regular (quiet) thunderstorm activity periods and an unprecedented local amplification of lightning activity near the Hunga Tonga-Hunga Ha'apai volcano during its eruption on January 15, 2022, were studied. Throughout the quiet periods, ELF signal processing yielded similar characteristics of integral lightning activity derived from CARISMA and Vernadsky records, consistent with findings in the literature and previous investigations at the Vernadsky site. On the other hand, the analysis of Schumann spectra and ELF transients during the Tonga volcano eruption confirmed that most thunderstorms were concentrated within a relatively small area around the epicenter, validating the point source model for the global lightning center. This paper demonstrates that the CARISMA and Vernadsky magnetometer network is well-suited for establishing a global lightning activity monitoring and
intense lightning geolocation system. Such a system can be employed to assess and study global temperature trends, monitor the growth of lightning activity in high latitudes, and detect terrestrial, atmospheric, and geospace disaster phenomena.
References
- Astafyeva, E., Maletckii, B., Mikesell, T. D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., & Rolland, L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters, 49(10), e2022GL098827. https://doi.org/10.1029/2022GL098827
- Balser, M., & Wagner, C. A. (1960). Observation of Earthionosphere cavity resonances. Nature, 188, 638–641. https://doi.org/10.1038/188638a0
- Bezrodny, V., Budanov, O., Koloskov, A. V., Hayakawa, M., Sinitsin, V., Yampolski, Y., & Korepanov, V. (2007). The ELF band as a possible spectral window for seismo-ionospheric diagnostics. Sun and Geosphere, 2(2), 88–95.
- Bliokh, P. V., Nikolaenko, A. P., & Filippov, Yu. F. (1980). Schumann resonances in the Earth-ionosphere cavity (D. LIanwyn-Jones, Ed.). Peter Peregrinus Ltd on behalf of the Institution of Electrical Engineers.
- Bór, J., Bozóki, T., Sátori, G., Williams, E., Behnke, S. A., Rycroft, M. J., Buzás, A., Silva, H. G., Kubicki, M., Said, R., Vagasky, C., Steinbach, P., Szabóné André, K., & Atkinson, M. (2023). Responses of the AC/DC global electric circuit to volcanic electrical activity in the Hunga Tonga-Hunga Ha’apai eruption on 15 January 2022. Journal of Geophysical Research: Atmospheres, 128 (8), e2022JD038238. https://doi.org/10.1029/2022JD038238
- Born, M., & Wolf, E. (1959). Principles of optics. Pergamon Press Ltd.
- Bozóki, T., Sátori, G., Williams, E., Mironova, I., Steinbach, P., Bland, E. C., Koloskov, A., Yampolski, Yu. M., Budanov, O. V., Neska, M., Sinha, A. K., Rawat, R., Sato, M., Beggan, C. D., Toledo-Redondo, S., Liu,Y., & Boldi, R. (2021). Solar cycle-modulated deformation of the Earth–ionosphere cavity. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.689127
- Bozóki, T., Sátori, G., Williams, E., Guha, A., Liu, Y., Steinbach, P., Leal, A., Herein, M., Atkinson, M., Beggan, C. D., DiGangi, E., Koloskov, A., Kulak, A., LaPierre, J., Milling, D. K., Mlynarczyk, J., Neska, A., Potapov, A., Raita, T., Rawat, R., Said, R., Sinha, A. K., & Yampolski, Y. (2023). Day-to-day quantification of changes in global lightning activity based on Schumann resonances. Journal of Geophysical Research: Atmospheres, 128, e2023JD038557. https://doi.org/10.1029/2023JD038557
- Chen, Y., Romps, D. M., Seeley, J. T., Veraverbeke, S., Riley, W. J., Mekonnen, Z. A., & Randerson, J. T. (2021). Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 11, 404–410. https://doi.org/10.1038/s41558-021-01011-y
- Cherry, N. (2002). Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar. Natural Hazards, 26, 279–331. https://doi.org/10.1023/A:1015637127504
- Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), 4005. https://doi.org/10.1029/2002JD002347
- Füllekrug, M., & Constable, S. (2000). Global triangulation of intense lightning discharges. Geophysical Research Letters, 27(3), 333–336. https://doi.org/10.1029/1999GL003684
- Füllekrug, M., & Fraser-Smith, A. C. (1997). Global lightning and climate variability inferred from ELF magnetic field observations. Geophysical Research Letters, 24(19), 2411–2414. https://doi.org/10.1029/97GL02358
- Gurnett, D. A., & Bhattacharjee, A. (2017). Introduction to plasma physics: with space, laboratory and astrophysical applications (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781139226059
- Hobara, Y., Harada, T., Ohta, K., Sekiguchi, M., & Hayakawa, M. (2011). A study on global temperature and thunderstorm activity by using the data of Schumann resonance observed at Nakatsugawa, Japan. Journal of Atmospheric Electricity, 31(2), 111–119. https://doi.org/10.1541/jae.31
- Holzworth, R. H., Brundell, J. B., McCarthy, M. P., Jacobson, A. R., Rodger, C. J., & Anderson, T. S. (2021). Lightning in the Arctic. Geophysical Research Letters, 48(7), e2020GL091366. https://doi.org/10.1029/2020GL091366
- Huang, Y. S., Tang, I., Chin, W. C., Jang, L. S., Lee, L. C., Lin, C., Yang, C. P., & Cho, S. L. (2022). The subjective and objective improvement of non-invasive treatment of Schumann resonance in insomnia — a randomized and doubleblinded study. Nature and Science of Sleep, 14, 1113–1124. https://doi.org/10.2147/NSS.S346941
- Koloskov, A. V., Bezrodny, V. G., Budanov, O. V., Paznukhov, V. E., & Yampolski, Yu. M. (2005). Polarization monitoring of the Schumann resonances in the Antarctic and reconstruction of the world thunderstorm activity characteristics. Radio Physics and Radio Astronomy, 10(1), 11–29. (in Russian)
- Koloskov, A. V., Baru, N. A., Budanov, O. V., Bezrodny, V. G., Gavriluk, B. Yu., Paznukhov, A. V., & Yampolski, Yu. M. (2013). Diagnostic of the global lightning activity based on the data of long-term monitoring of the Schumann resonance signals at UAS Akademician Vernadsky. Ukrainian Antarctic Journal, 12, 170–176. (in Russian). https://doi.org/10.33275/1727-7485.12.2013.260
- Koloskov, A. V., Nickolaenko, A. P., Yampolsky, Yu. M., Hall, C., & Budanov, O. V. (2020a). Variations of global thunderstorm activity derived from the long-term Schumann resonance monitoring in the Antarctic and in the Arctic. Journal of Atmospheric and Solar-Terrestrial Physics, 201, 105231. https://doi.org/10.1016/j.jastp.2020.105231
- Koloskov, A., Shvets, A., Nickolaenko, A., Yampolski, Yu., Budanov, O., & Shvets, A. (2020b). Studying the powerful lightning discharges from the Antarctic and the Arctic stations using synchronous ELF and VLF data. In URSI GASS 2020, Rome, Italy, 29 August – 5 September 2020. http://www.ursi.org/proceedings/procGA20/papers/KoloskovetalELFVLFExtendedAbstract.pdf
- Koloskov, O. V., Nickolaenko, A. P., Yampolski, Y. M., & Budanov, O. V. (2022). Electromagnetic seasons in Schumann resonance records. Journal of Geophysical Research: Atmospheres, 127(17), e2022JD036582. https://doi.org/10.1029/2022JD036582
- Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E.-A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K.-H., Russell, C. T., Auster, H.-U., & Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141, 413–451, https://doi.org/10.1007/s11214-008-9457-6
- Mezentsev, A., Nickolaenko, A. P., Shvets, A. V., Galuk, Yu. P., Schekotov, A. Yu., Hayakawa, M., Romero, R., Izutsu, J., & Kudintseva, I. G. (2023). Observational and model impact of Tonga volcano eruption on Schumann resonance. Journal of Geophysical Research: Atmospheres, 128(7), e2022JD037841. https://doi.org/10.1029/2022JD037841
- Nickolaenko, A. P., & Hayakawa, M. (2002). Resonances in the Earth-ionosphere cavity. Kluwer Academic Publishers.
- Nickolaenko, A. P., & Hayakawa, M. (2014). Schumann resonance for tyros (Essentials of global electromagnetic resonance in the Earth–ionosphere cavity). Springer Tokyo. https://doi.org/10.1007/978-4-431-54358-9
- Nickolaenko, A. P., Koloskov, A. V., Hayakawa, M., Yampolski, Yu. M., Budanov, O. V., & Korepanov, V. E. (2015). 11-year solar cycle in Schumann resonance data as observed in Antarctica. Sun and Geosphere, 10(1), 39–49.
- Nickolaenko, A., Schekotov, A. Yu., Hayakawa, M., Romero, R., & Izutsu, J. (2022). Electromagnetic manifestations of Tonga eruption in Schumann resonance band. Journal of Atmospheric and Solar-Terrestrial Physics, 237, 105897. https://doi.org/10.1016/j.jastp.2022.105897
- Ondraskova, A., Sevcík, S., & Kostecký, P. (2009). A significant decrease of the fundamental Schumann resonance frequency during the solar cycle minimum of 2008-9 as observed at Modra Observatory. Contributions to Geophysics & Geodesy, 39(4), 345–354. https://doi.org/10.2478/v10126-009-0013-5
- Paznukhov, A. V., Yampolski, Y. M., Koloskov, A. V., Hall, C., Paznukhov, V. E., & Budanov, O. V. (2019). Correlation between air temperature and thunderstorm activity in Africa according to the ELF measurements in Antarctica, Arctica and Ukraine. Radio Physics and Radio Astronomy, 24(3), 195–205. https://doi.org/10.15407/rpra24.03.195 (in Russian)
- Paznukhov, A. V., Yampolski, Y. M., & Koloskov, A. V. (2020). Correlation between air temperature and thunderstorm activity in South America according to the ELF measurements in Antarctica. Radio Physics and Radio Astronomy, 25(3), 211–217. https://doi.org/10.15407/rpra25.03.211 (in Ukrainian)
- Peterson, M., Mach, D., & Buechler, D. (2021). A global LIS/OTD climatology of lightning flash extent density. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD033885. https://doi.org/10.1029/2020JD033885
- Pizzuti, A., Bennett, A., & Füllekrug, M. (2022). Long-term observations of Schumann resonances at Portishead (UK). Atmosphere, 13(1), 38. https://doi.org/10.3390/atmos13010038
- Plotnik, T., Price, C., Saha, J., & Guha, A. (2021). Transport of water vapor from tropical cyclones to the upper troposphere. Atmosphere, 12(11), 1506. https://doi.org/10.3390/atmos12111506
- Price, C. (2000). Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature, 406, 290–293. https://doi.org/10.1038/35018543
- Price, C., & Rind, D. (1990). The effect of global warming on lightning frequencies. In Conference on Severe Local Storms (pp. 748–751). AMS.
- Price, C., Penner, J., & Prather, M. (1997). NOx from li ghtning: 1. Global distribution based on lightning physics. Journal of Geophysical Research: Atmospheres, 102(D5), 5929–5941. https://doi.org/10.1029/96JD03504
- Price, C., Williams, E., Elhalel, G., & Sentman, D. (2021). Natural ELF fields in the atmosphere and in living organisms. International Journal of Biometeorology, 65(1), 85–92. https://doi.org/10.1007/s00484-020-01864-6
- Roldugin, V. C., Maltsev, Y. P., Vasiljev, A. N., Shvets, A. V., & Nikolaenko, A. P. (2003). Changes of Schumann resonance parameters during the solar proton event of 14 July 2000. Journal of Geophysical Research: Space Physics, 108(A3). https://doi.org/10.1029/2002JA009495
- Rycroft, M. J., Israelsson, S., & Price, C. (2000). The global atmospheric electric circuit, solar activity and climate change. Journal of Atmospheric and Solar-Terrestrial Physics, 62(17–18), 1563–1576. https://doi.org/10.1016/S1364-6826(00)00112-7
- Sátori, G. (1996). Monitoring Schumann resonances – 11. Daily and seasonal frequency variations. Journal of Atmospheric and Terrestrial Physics, 58(13), 1483–1488. https://doi.org/10.1016/0021-9169(95)00146-8
- Sátori, G., Szendrői, J., & Verő, J. (1996). Monitoring Schumann resonances – I. Methodology. Journal of Atmospheric and Terrestrial Physics, 58(13), 1475–1481. https://doi.org/10.1016/0021-9169(95)00145-X
- Sátori, G., Williams, E., & Mushtak, V. (2005). Response of the Earth–ionosphere cavity resonator to the 11-year solar cycle in X-radiation. Journal of Atmospheric and Solar-Terrestrial Physics, 67(6), 553–562. https://doi.org/10.1016/j.jastp.2004.12.006
- Sátori, G., Williams, E., Price, C., Boldi, R., Koloskov, A., Yampolski, Y., Guha, A., & Barta, V. (2016). Effects of Energetic Solar Emissions on the Earth-Ionosphere Cavity of Schumann Resonances. Surveys in Geophysics, 37, 757–789. https://doi.org/10.1007/s10712-016-9369-z
- Schlegel, K., & Füllekrug, M. (1999). Schumann resonance parameter changes during high-energy particle precipitation. Journal of Geophysical Research: Space Physics, 104(A5), 10,111–10,118. https://doi.org/10.1029/1999JA900056
- Schumann, W. O. (1952). Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülleumgebenist. Zeitschrift für Naturforschung A, 7(2), 149–154. https://doi.org/10.1515/zna-1952-0202
- Sekiguchi, M., Hayakawa, M., Nickolaenko, A. P., & Hobara, Y. (2006). Evidence on a link between the intensity of Schumann resonance and global surface temperature. Annales Geophysicae, 24(7), 1809–1817. https://doi.org/10.5194/angeo-24-1809-2006
- Sentman, D. D., & Fraser, B. J. (1991). Simultaneous observations of Schumann resonances in California and Australia: evidence for intensity modulation by the local height of the D-region. Journal of Geophysical Research: Space Physics, 96(A9), 15973–15984. https://doi.org/10.1029/91JA01085
- Shvets, A. V., Ivanov, V. K., & Varavin, A. V. (2003). A mobile multichannel system for the automatic low-frequency signal acquisition and analysis in the presence of high-power power-main noises. Instruments and Experimental Techniques, 46(3), 351–356. https://doi.org/10.1023/A:1024462304875
- Shvets, A. V., Nickolaenko, A. P., Koloskov, A. V., Yampolsky, Yu. M., Budanov, O. V., & Shvets, A. A. (2022). Day after day variations of arrival angles and polarisation parameters of Q bursts recorded at Antarctic station “Akademik Vernadsky”. Journal of Atmospheric and Solar–Terrestrial Physics, 229, 105811. https://doi.org/10.1016/j.jastp.2021.105811
- Surkov, V., & Hayakawa, M. (2014). Ultra and extremely low frequency electromagnetic fields. Springer Tokyo. https://doi.org/10.1007/978-4-431-54367-1
- Timofejeva, I., McCraty, R., Atkinson, M., Alabdulgader, A. A., Vainoras, A., Landauskas, M., Šiaučiūnaitė, V., & Ragulskis, M. (2021). Global study of human heart rhythm synchronization with the Earth’s time varying magnetic field. Applied Sciences, 11, 2935. https://doi.org/10.3390/app11072935
- Vagasky, C., & Said, R. (2022). Did the eruption of Hunga Tonga-Hunga Ha’apai produce the greatest concentration of lightning ever detected? In AGU Fall Meeting, Chicago IL, 12–16 December, 2022. Science leads the future. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1157649
- Williams, E. R. (1992). The Schumann resonance: A global tropical thermometer. Science, 256(5060), 1184–1187. https://doi.org/10.1126/science.256.5060.1184
- Williams, E. R. (2005). Lightning and climate: A review. Atmospheric Research, 76(1–4), 272–287. https://doi.org/10.1016/j.atmosres.2004.11.014
- Williams, E. R. (2020). Lightning and Climate Change. In A. Piantini (Ed.), Lightning Interaction with Power Systems (Vol. 1, pp. 1–45). The Institution of Engineering and Technology. https://doi.org/10.1049/PBPO172F_ch1
- Williams, E., Guha, A., Boldi, R., Sátori, G., Koloskov, A., & Yampolski, Y. (2014). Global circuit response to the 11-year solar cycle: changes in source or in medium? In XV International conference on atmospheric electricity, 15–20 June 2014, Norman, Oklahoma. https://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Williams_299.pdf
- Williams, E., Guha, A., Boldi, R., Christian, H., & Buechler, D. (2019). Global lightning activity and the hiatus in global warming. Journal of Atmospheric and Solar-Terrestrial Physics, 189, 27–34. https://doi.org/10.1016/j.jastp.2019.03.011
- Williams, E., Montanya, J., Saha, J., & Guha, A. (2023). Lightning and Climate Change. In V. Cooray, F. Rachidi, & M. Rubinstein (Eds.), Lightning Electromagnetics (2nd ed., Vol. 2, pp. 569–626). Institute of Engineering and Technology. https://doi.org/10.1049/PBPO127G_ch15