Ukrainian Antarctic Journal

Vol 23 No 2(31) (2025): Ukrainian Antarctic Journal
Articles

Comparison of Antarctic total ozone behavior in pre-SSW, SSW, and post-SSW years

Ruixian Yu
College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, China
Asen Grytsai
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Gennadi Milinevsky
College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, China; State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
Oleksandr Evtushevsky
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Yuliia Yukhymchuk
College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, China; Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
Diana Zazubyk
Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
Andrew Klekociuk
School of Physics, Chemistry and Earth Science, The University of Adelaide, Adelaide, 5005, Australia
Published December 30, 2025
Keywords
  • Antarctic research stations,
  • life cycle,
  • MSR-2 overpass data,
  • planetary waves,
  • sudden stratospheric warming,
  • total ozone column
  • ...More
    Less
How to Cite
Yu, R., Grytsai, A., Milinevsky, G., Evtushevsky, O., Yukhymchuk, Y., Zazubyk, D., & Klekociuk, A. (2025). Comparison of Antarctic total ozone behavior in pre-SSW, SSW, and post-SSW years. Ukrainian Antarctic Journal, 23(2(31), 30-52. https://doi.org/10.33275/1727-7485.2.2025.749

Abstract

Sudden stratospheric warmings (SSWs) are dramatic events characterized by sudden and sharp changes in the distribution of polar stratospheric temperatures, zonal winds, total ozone column, and other atmospheric parameters. SSWs are usual in the winter season in the Northern Hemisphere, but they are rare in the Antarctic stratosphere. Only one major SSW (September 2002) was observed in the southern polar stratosphere over the entire time of observations. In the paper, this event is considered in conjunction with the warmings of 1988 and 2019, which do not correspond to the major SSW definition, but were accompanied by significant temperature and total ozone increases, as well as zonal wind deceleration. The changes in the total ozone distributions over Antarctica are analyzed using Multi-Sensor Reanalysis (MSR-2) data. We have plotted and analyzed the spatial distribution of total ozone anomalies in the SSW years and adjacent years. A significant zonal asymmetry is noted between the Western and Eastern Hemispheres over Antarctica. In the East Antarctic stratosphere, total ozone increases several weeks before the central date of the warming, indicating preconditions for the event. Quasi-periodic oscillations associated with planetary waves were observed over East Antarctica in 1988 and 2002. On the contrary, total ozone over West Antarctica showed no clear features prior to the warming. The warmings have distinct spatial coverage: in particular, the 1988 event did not penetrate the inner region of the stratospheric polar vortex. In the adjacent years, total ozone was predominantly lower than climatological values, and we have concluded that total ozone decrease is most typical for the previous years (1987, 2001, 2018).

References

  1. Baldwin, M., Hirooka, T., O’Neill, A., Yoden, S., Charlton, A. J., Hio, Y., Lahoz, W. A., & Mori, A. (2003). Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC newsletter, 20, 24–26. https://www.atmosp.physics.utoronto.ca/SPARC/News20/20_Baldwin.html
  2. Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLID-17-0648.1
  3. Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., & Match, A. (2015). Defining sudden stratospheric warmings. Bulletin of the American Meteorological Society, 96(11), 1913–1928. https://doi.org/10.1175/bams-d-13-00173.1
  4. Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
  5. Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. Journal of Climate, 20(3), 449–469. https://doi.org/10.1175/JCLI3996.1
  6. Eswaraiah, S., Kim, J.-H., Lee, W., Hwang, J., Kumar, K. N., & Kim, Y. H. (2020). Unusual changes in the Antarctic middle atmosphere during the 2019 warming in the Southern Hemisphere. Geophysical Research Letters, 47(19), e2020GL08919. https://doi.org/10.1029/2020GL089199
  7. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  8. Holton, J. R., & Tan, H.-C. (1982). The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. Journal of the Meteorological Society of Japan, Ser. II, 60(1), 140–148. https://doi.org/10.2151/jmsj1965.60.1_140
  9. Jucker, M., Reichler, T., & Waugh, D. W. (2021). How frequent are Antarctic sudden stratospheric warmings in present and future climate? Geophysical Research Letters, 48(11), e2021GL093215. https://doi.org/10.1029/2021GL093215
  10. Kanzawa, H., & Kawaguchi, S. (1990). Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988. Geophysical Research Letters, 17(1), 77–80. https://doi.org/10.1029/GL017i001p00077
  11. Lim, E.-P., Hendon, H. H., & Thompson, D. W. J. (2018). Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. Journal of Geophysical Research: Atmospheres, 123(21), 12002–12016. https://doi.org/10.1029/2018JD029321
  12. Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z. D., Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi, C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P. A., & Wang, G. (2021). The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bulletin of the American Meteorological Society, 102(6), E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1
  13. Ma, C., Yang, P., Tan, X., & Bao, M. (2022). Possible causes of the occurrence of a rare Antarctic sudden stratospheric warming in 2019. Atmosphere, 13(1), 147. https://doi.org/10.3390/atmos13010147
  14. Newman, P. A., & Nash, E. R. (2005). The unusual Southern Hemisphere stratosphere winter of 2002. Journal of the Atmospheric Sciences, 62(3), 614–628. https://doi.org/10.1175/JAS-3323.1
  15. Niu, Y., Xie, F., & Wu, S. (2023). ENSO Modoki Impacts on the Interannual Variations of Spring Antarctic Stratospheric Ozone. Journal of Climate, 36(16), 5641–5658. https://doi.org/10.1175/JCLI-D-22-0826.1
  16. Nordström, V. J., & Seppälä, A. (2021). Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings? Atmospheric Chemistry and Physics, 21(17), 12835–12853. https://doi.org/10.5194/acp-21-12835-2021
  17. Schoeberl, M. R. (1988). Dynamics weaken the polar hole. Nature, 336(6198), 420–421. https://doi.org/10.1038/336420a0
  18. Shen, X., Wang, L., & Osprey, S. (2020a). Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophysical Research Letters, 47(20), e2020GL089343. https://doi.org/10.1029/2020GL089343
  19. Shen, X., Wang, L., & Osprey, S. (2020b). The Southern Hemisphere sudden stratospheric warming of September 2019. Science Bulletin, 65(21), 1800–1802. https://doi.org/10.1016/j.scib.2020.06.028
  20. Vincent, R. A., Kovalam, S., Reid, I. M., Murphy, D. J., & Klekociuk, A. (2022). Southern Hemisphere stratospheric warmings and coupling to the mesosphere-lower thermosphere. Journal of Geophysical Research: Atmospheres, 127(15), e2022JD036558. https://doi.org/10.1029/2022JD036558
  21. Watson, P. A. G., & Gray, L. J. (2014). How does the quasi-biennial oscillation affect the stratospheric polar vortex? Journal of the Atmospheric Sciences, 71(1), 391–409. https://doi.org/10.1175/JAS-D-13-096.1
  22. WMO: Commission for Atmospheric Sciences. (1978). Abridged Final Report of the Seventh Session Manila, 27 February – 10 March (WMO-No. 509). WMO. Retrieved August 22, 2025, from https://library.wmo.int/idurl/4/35601
  23. Yu, R., Grytsai, A., Milinevsky, G., Evtushevsky, O., Klekociuk, A., Shi, Y., Poluden, O., Wang, X., & Ivaniha, O. (2025). Zonal asymmetry in ozone variations over Antarctic stations during the life cycle of sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 130(12), e2024JD042896. https://doi.org/10.1029/2024JD042896
  24. Zi, Y., Long, Z., Sheng, J., Lu, G., Perrie, W., & Xiao, Z. (2025a). The sudden stratospheric warming events in the Antarctic in 2024. Geophysical Research Letters, 52(7), e2025GL115257. https://doi.org/10.1029/2025GL115257
  25. Zi, Y., Long, Z., Sheng, J., Lu, G., Perrie, W., & Xiao, Z. (2025b). Cross–seasonal impact of SST anomalies over the tropical central Pacific Ocean on the Antarctic stratosphere. EGUsphere, preprint. https://doi.org/10.5194/egusphere-2025-2990