- Antarctic research stations,
- life cycle,
- MSR-2 overpass data,
- planetary waves,
- sudden stratospheric warming
- total ozone column ...More
Copyright (c) 2025 Ukrainian Antarctic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Sudden stratospheric warmings (SSWs) are dramatic events characterized by sudden and sharp changes in the distribution of polar stratospheric temperatures, zonal winds, total ozone column, and other atmospheric parameters. SSWs are usual in the winter season in the Northern Hemisphere, but they are rare in the Antarctic stratosphere. Only one major SSW (September 2002) was observed in the southern polar stratosphere over the entire time of observations. In the paper, this event is considered in conjunction with the warmings of 1988 and 2019, which do not correspond to the major SSW definition, but were accompanied by significant temperature and total ozone increases, as well as zonal wind deceleration. The changes in the total ozone distributions over Antarctica are analyzed using Multi-Sensor Reanalysis (MSR-2) data. We have plotted and analyzed the spatial distribution of total ozone anomalies in the SSW years and adjacent years. A significant zonal asymmetry is noted between the Western and Eastern Hemispheres over Antarctica. In the East Antarctic stratosphere, total ozone increases several weeks before the central date of the warming, indicating preconditions for the event. Quasi-periodic oscillations associated with planetary waves were observed over East Antarctica in 1988 and 2002. On the contrary, total ozone over West Antarctica showed no clear features prior to the warming. The warmings have distinct spatial coverage: in particular, the 1988 event did not penetrate the inner region of the stratospheric polar vortex. In the adjacent years, total ozone was predominantly lower than climatological values, and we have concluded that total ozone decrease is most typical for the previous years (1987, 2001, 2018).
References
- Baldwin, M., Hirooka, T., O’Neill, A., Yoden, S., Charlton, A. J., Hio, Y., Lahoz, W. A., & Mori, A. (2003). Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC newsletter, 20, 24–26. https://www.atmosp.physics.utoronto.ca/SPARC/News20/20_Baldwin.html
- Butler, A. H., & Gerber, E. P. (2018). Optimizing the definition of a sudden stratospheric warming. Journal of Climate, 31(6), 2337–2344. https://doi.org/10.1175/JCLID-17-0648.1
- Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., & Match, A. (2015). Defining sudden stratospheric warmings. Bulletin of the American Meteorological Society, 96(11), 1913–1928. https://doi.org/10.1175/bams-d-13-00173.1
- Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017
- Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. Journal of Climate, 20(3), 449–469. https://doi.org/10.1175/JCLI3996.1
- Eswaraiah, S., Kim, J.-H., Lee, W., Hwang, J., Kumar, K. N., & Kim, Y. H. (2020). Unusual changes in the Antarctic middle atmosphere during the 2019 warming in the Southern Hemisphere. Geophysical Research Letters, 47(19), e2020GL08919. https://doi.org/10.1029/2020GL089199
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
- Holton, J. R., & Tan, H.-C. (1982). The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. Journal of the Meteorological Society of Japan, Ser. II, 60(1), 140–148. https://doi.org/10.2151/jmsj1965.60.1_140
- Jucker, M., Reichler, T., & Waugh, D. W. (2021). How frequent are Antarctic sudden stratospheric warmings in present and future climate? Geophysical Research Letters, 48(11), e2021GL093215. https://doi.org/10.1029/2021GL093215
- Kanzawa, H., & Kawaguchi, S. (1990). Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988. Geophysical Research Letters, 17(1), 77–80. https://doi.org/10.1029/GL017i001p00077
- Lim, E.-P., Hendon, H. H., & Thompson, D. W. J. (2018). Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. Journal of Geophysical Research: Atmospheres, 123(21), 12002–12016. https://doi.org/10.1029/2018JD029321
- Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z. D., Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi, C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P. A., & Wang, G. (2021). The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bulletin of the American Meteorological Society, 102(6), E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1
- Ma, C., Yang, P., Tan, X., & Bao, M. (2022). Possible causes of the occurrence of a rare Antarctic sudden stratospheric warming in 2019. Atmosphere, 13(1), 147. https://doi.org/10.3390/atmos13010147
- Newman, P. A., & Nash, E. R. (2005). The unusual Southern Hemisphere stratosphere winter of 2002. Journal of the Atmospheric Sciences, 62(3), 614–628. https://doi.org/10.1175/JAS-3323.1
- Niu, Y., Xie, F., & Wu, S. (2023). ENSO Modoki Impacts on the Interannual Variations of Spring Antarctic Stratospheric Ozone. Journal of Climate, 36(16), 5641–5658. https://doi.org/10.1175/JCLI-D-22-0826.1
- Nordström, V. J., & Seppälä, A. (2021). Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings? Atmospheric Chemistry and Physics, 21(17), 12835–12853. https://doi.org/10.5194/acp-21-12835-2021
- Schoeberl, M. R. (1988). Dynamics weaken the polar hole. Nature, 336(6198), 420–421. https://doi.org/10.1038/336420a0
- Shen, X., Wang, L., & Osprey, S. (2020a). Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophysical Research Letters, 47(20), e2020GL089343. https://doi.org/10.1029/2020GL089343
- Shen, X., Wang, L., & Osprey, S. (2020b). The Southern Hemisphere sudden stratospheric warming of September 2019. Science Bulletin, 65(21), 1800–1802. https://doi.org/10.1016/j.scib.2020.06.028
- Vincent, R. A., Kovalam, S., Reid, I. M., Murphy, D. J., & Klekociuk, A. (2022). Southern Hemisphere stratospheric warmings and coupling to the mesosphere-lower thermosphere. Journal of Geophysical Research: Atmospheres, 127(15), e2022JD036558. https://doi.org/10.1029/2022JD036558
- Watson, P. A. G., & Gray, L. J. (2014). How does the quasi-biennial oscillation affect the stratospheric polar vortex? Journal of the Atmospheric Sciences, 71(1), 391–409. https://doi.org/10.1175/JAS-D-13-096.1
- WMO: Commission for Atmospheric Sciences. (1978). Abridged Final Report of the Seventh Session Manila, 27 February – 10 March (WMO-No. 509). WMO. Retrieved August 22, 2025, from https://library.wmo.int/idurl/4/35601
- Yu, R., Grytsai, A., Milinevsky, G., Evtushevsky, O., Klekociuk, A., Shi, Y., Poluden, O., Wang, X., & Ivaniha, O. (2025). Zonal asymmetry in ozone variations over Antarctic stations during the life cycle of sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 130(12), e2024JD042896. https://doi.org/10.1029/2024JD042896
- Zi, Y., Long, Z., Sheng, J., Lu, G., Perrie, W., & Xiao, Z. (2025a). The sudden stratospheric warming events in the Antarctic in 2024. Geophysical Research Letters, 52(7), e2025GL115257. https://doi.org/10.1029/2025GL115257
- Zi, Y., Long, Z., Sheng, J., Lu, G., Perrie, W., & Xiao, Z. (2025b). Cross–seasonal impact of SST anomalies over the tropical central Pacific Ocean on the Antarctic stratosphere. EGUsphere, preprint. https://doi.org/10.5194/egusphere-2025-2990
