Ukrainian Antarctic Journal

Vol 23 No 2(31) (2025): Ukrainian Antarctic Journal
Articles

Renewable energy-based power generation in Antarctica: Roadmap for optimal sizing, placement and uncertainties prediction using AI-guided technological advances

Muhammad Fahad Shinwari
Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Malaysia
Muhamad Zahim Sujod
Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Malaysia
Norhafidzah Mohd Saad
Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Malaysia
Nor Azwan Mohamed Kamari
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
Muhamad Zalani Daud
Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Terengganu, 21300, Malaysia
Erhan Arslan
TÜBİTAK Marmara Research Center, Polar Research Institute, Gebze/Kocaeli, 41470, Türkiye
Published December 30, 2025
Keywords
  • Antarctica renewable energy,
  • energy efficiency,
  • Grey Wolf Optimisation,
  • Random Forest Regression,
  • solar photovoltaic and wind power,
  • technological innovations
  • ...More
    Less
How to Cite
Fahad Shinwari, M., Zahim Sujod, M., Mohd Saad, N., Mohamed Kamari, N. A., Zalani Daud, M., & Arslan, E. (2025). Renewable energy-based power generation in Antarctica: Roadmap for optimal sizing, placement and uncertainties prediction using AI-guided technological advances. Ukrainian Antarctic Journal, 23(2(31), 97-114. https://doi.org/10.33275/1727-7485.2.2025.754

Abstract

Antarctica, the most remote and environmentally extreme region on Earth, presents unique challenges for energy generation due to its harsh climate, isolation, and logistical constraints. The continent’s research stations, vital for advancing global understanding of climate change, glaciology, ecosystem, and environmental studies, have historically relied on fossil fuels for power, which poses significant logistical and environmental risks, high operational costs, and ethical concerns related to fossil fuel usage in such a pristine environment. This paper provides a comprehensive review of the current landscape of renewable energy adoption in Antarctica, focusing on key research stations such as Princess Elisabeth Station, McMurdo Station, and others that have adopted solar, wind, and hybrid power systems. The paper also discusses the major challenges to widespread renewable energy adoption, including extreme weather conditions, temperature fluctuations, equipment reliability issues, seasonal energy variability, and technological limitations in energy capture and storage systems capabilities. In response to these challenges, the paper explores the potential of advanced computational and artificial intelligence methods to enhance renewable energy system planning in Antarctica. Furthermore, it highlights emerging opportunities for improving renewable energy efficiency and reliability by integrating advanced technologies such as Grey Wolf Optimisation for optimal energy source placement, Random Forest Regression for weather prediction, and innovations in hybrid solar and wind power. The findings underscore the critical need for technological advancements and international collaboration with the Polar Research Institute, Türkiye, to improve energy sustainability, specifically in Horseshoe Island, as well as across the broader Antarctic region. The research concludes by offering recommendations for future research directions, including the implementation of robust data-driven forecasting models and high-performance energy storage technologies. These strategies aim to support the full transition of Antarctica’s energy infrastructure to renewable sources, in alignment with urgent global goals to reduce carbon emissions and the imperative to protect one of the Earth’s most fragile ecosystems.

References

  1. Akhtar, S., Sujod, M. Z. B., & Rizvi, S. S. H. (2022). An intelligent data-driven approach for electrical energy load management using Machine Learning Algorithms. Energies, 15(15), 5742. https://doi.org/10.3390/en15155742
  2. Al-Shetwi, A. Q., & Sujod, M. Z. (2016). Modeling and dynamics study of large scale PV system connected Malaysian grid under different fault conditions. 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering, ICAEES 2016, 14–16 November 2016 (pp. 488–494). https://doi.org/10.1109/ICAEES.2016.7888094
  3. Al-Shetwi, A. Q., & Sujod, M. Z. (2018a). Harmonic distortion and voltage imbalance study of photovoltaic power plant connected to the Malaysian grid. Journal of Telecommunication, Electronic and Computer Engineering, 10(1–2), 1–6. https://jtec.utem.edu.my/jtec/article/view/3311
  4. Al-Shetwi, A. Q., & Sujod, M. Z. (2018b). Modeling and design of photovoltaic power plant connected to the MV side of Malaysian grid with TNB technical regulation compatibility. Electrical Engineering, 100(4), 2407–2419. https://doi.org/10.1007/s00202-018-0726-4
  5. Al-Shetwi, A. Q., & Sujod, M. Z. (2018c). Voltage sag detection in grid-connected photovoltaic power plant for low voltage ride-through control. Recent Advances in Electrical & Electronic Engineering (formerly Recent Patents on Electrical & Electronic Engineering), 12(4), 384–392. https://doi.org/10.2174/2352096511666180626151223
  6. Anadol, M. A., & Erhan, E. (2019). The effect of snowfall and icing on the sustainability of the power output of a grid-connected photovoltaic system in Konya, Turkey. Turkish Journal of Electrical Engineering and Computer Sciences, 27(6), 4608–4623. https://doi.org/10.3906/ELK-1901-178
  7. Andenæs, E., Jelle, B. P., Ramlo, K., Kolås, T., Selj, J., & Foss, S. E. (2018). The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Solar Energy, 159, 318–328. https://doi.org/10.1016/j.solener.2017.10.078
  8. Andrews, R. W., Pollard, A., & Pearce, J. M. (2013). The effects of snowfall on solar photovoltaic performance. Solar Energy, 92, 84–97. https://doi.org/10.1016/j.solener.2013.02.014
  9. Aprea, J. L. (2012). Two years experience in hydrogen production and use in Hope Bay, Antarctica. International Journal of Hydrogen Energy, 37(19), 14773–14780. https://doi.org/10.1016/j.ijhydene.2012.01.165
  10. Arndt, S., Hoppmann, M., Schmithüsen, H., Fraser, A. D., & Nicolaus, M. (2020). Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica. The Cryosphere, 14(9), 2775–2793. https://doi.org/10.5194/tc-14-2775-2020
  11. Babar, B., Luppino, L. T., Boström, T., & Anfinsen, S. N. (2020). Random forest regression for improved mapping of solar irradiance at high latitudes. Solar Energy, 198, 81–92. https://doi.org/10.1016/j.solener.2020.01.034
  12. Baring-Gould, I., Robichaud, R., & McLain, K. (2005). Analysis of the use of wind energy to supplement the power needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica (Technical Report NREL/TP-500-37504). National Renewable Energy Laboratory. https://doi.org/10.2172/15016224
  13. Berkowitz, R. (2017, July 1). Black carbon in Antarctica. Physics Today, 70(7), 25. Retrieved May 18, 2025, from https://physicstoday.aip.org/news/black-carbon-inantarctica https://doi.org/10.1063/pt.6.1.20170601a
  14. Boccaletti, C., Di Felice, P., & Santini, E. (2014). Integration of renewable power systems in an Antarctic Research Station. Renewable Energy, 62, 582–591. https://doi.org/10.1016/j.renene.2013.08.021
  15. Călin, A. D., Coroiu, A. M., & Mureşan, H. B. (2023). Analysis of preprocessing techniques for missing data in the prediction of Sunflower Yield in response to the effects of climate change. Applied Sciences (Switzerland), 13(13), 7415. https://doi.org/10.3390/app13137415
  16. Chauhan, B., Tabassum, R., Tomar, S., & Pal, A. (2022). Analysis for the prediction of solar and wind generation in India using ARIMA, linear regression and random forest algorithms. Wind Engineering, 47(2), 251–265. https://doi.org/10.1177/0309524X221126742
  17. Cheek, J., Huyge, B., & De Pomereu, J. (2011). Princess Elisabeth Antarctica: an International Polar Year out reach and media success story. Polar Research, 30, 11153. https://doi.org/10.3402/polar.v30i0.11153
  18. Davies, B., Bendle, J., Emery, A., Boyall, L., & Jenkins, H. (2025, May 18). Welcome to Antarcticglaciers.org. Retrieved May 18, 2025, from https://www.antarcticglaciers.org
  19. De Christo, T. M., Fardin, J. F., Simonetti, D. S. L., Encarnação, L. F., & de Alvarez, C. E. (2016). Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case. Renewable Energy, 88, 236–246. https://doi.org/10.1016/j.renene.2015.11.014
  20. Frimannslund, I., Thiis, T., Aalberg, A., & Thorud, B. (2021). Polar solar power plants – Investigating the potential and the design challenges. Solar Energy, 224, 35–42. https://doi.org/10.1016/j.solener.2021.05.069
  21. Gala, Y., Fernández, Á., Díaz, J., & Dorronsoro, J. R. (2016). Hybrid machine learning forecasting of solar radiation values. Neurocomputing, 176, 48–59. https://doi.org/10.1016/j.neucom.2015.02.078
  22. Ghazali, S. N. A. M., Sujod, M. Z., & Jadin, M. S. (2021). Forensic of solar PV: A review of potential faults and maintenance strategies. 7th International Conference on Engineering and Emerging Technologies, ICEET 2021, 27–28 October 2021 (pp. 1–6). https://doi.org/10.1109/ICEET53442.2021.9659624
  23. Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343–366. https://doi.org/10.1007/s10044-020-00898-1
  24. Huang, L., Kang, J., Wan, M., Fang, L., Zhang, C., & Zeng, Z. (2021). Solar radiation prediction using different machine learning algorithms and implications for extreme climate events. Frontiers in Earth Science, 9, 596860. https://doi.org/10.3389/feart.2021.596860
  25. Ibrahim, R., Haidar, A. M. A., Zahim, M., & Iu, H. (2010). The effect of DVR location for enhancing voltage sag. 2010 International Conference on Intelligent and Advanced Systems, ICIAS 2010, 15–17 June 2010 (pp. 1–4). https://doi.org/10.1109/ICIAS.2010.5716232
  26. Jafar-Nowdeh, A., Babanezhad, M., Arabi-Nowdeh, S., Naderipour, A., Kamyab, H., Abdul-Malek, Z., & Ramachandaramurthy, V. K. (2020). Meta-heuristic matrix moth–flame algorithm for optimal reconfiguration of distribution networks and placement of solar and wind renewable sources considering reliability. Environmental Technology and Innovation, 20, 101118. https://doi.org/10.1016/j.eti.2020.101118
  27. Khalyasmaa, A., Eroshenko, S. A., Chakravarthy, T. P., Gasi, V. G., Bollu, S. K. Y., Caire R., Atluri, S. K. R., & Karrolla, S. (2019). Prediction of solar power generation based on Random Forest Regressor Model. 2019 International Multi- Conference on Engineering, Computer and Information Sciences, 21–27 October 2019. https://doi.org/10.1109/SIBIRCON48586.2019.8958063
  28. Khan, A. L., Klein, A. G., Katich, J. M., & Xian, P. (2019). Local emissions and regional wildfires influence refractory black carbon observations near Palmer Station, Antarctica. Frontiers in Earth Science, 7, 49. https://doi.org/10.3389/feart.2019.00049
  29. Kim, S. G., Jung, J. Y., & Sim, M. K. (2019). A two-step approach to solar power generation prediction based on weather data using machine learning. Sustainability (Switzerland), 11(5), 1501. https://doi.org/10.3390/SU11051501
  30. Lenky, C., & Davison, B. (2015). Surviving in the cold: Invertebrates and fish in Antarctica. In D. Liggett, B. Storey, Y. Cook, & V. Meduna (Eds.), Exploring the Last Continent (pp. 291–303). Springer, Cham. https://doi.org/10.1007/978-3-319-18947-5_14
  31. Li, Z., Lü, D., Sun, Z., & Li, C. (2021). Utilization of clean energy and future trend of Antarctic research stations. Advances in Polar Science, 32(3), 185–194.
  32. Lucci, J. J., Alegre, M., & Vigna, L. (2022). Renewables in Antarctica: an assessment of progress to decarbonize the energy matrix of research facilities. Antarctic Science, 34(5), 374–388. https://doi.org/10.1017/S095410202200030X
  33. Magill, P. (2004). Mawson: Antarctica’s first wind-powered station. Australian Antarctic Magazine, 6. Retrieved May 18, 2025, from https://www.antarctica.gov.au/magazine/issue-6-autumn-2004/feature/mawson-antarcticas-first-wind-powered-station
  34. Meenal, R., Michael, P. A., Pamela, D., & Rajasekaran, E. (2021). Weather prediction using random forest machine learning model. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1208–1215. https://doi.org/10.11591/ijeecs.v22.i2.pp1208-1215
  35. Miao, D., & Hossain, S. (2020). Improved gray wolf optimization algorithm for solving placement and sizing of electrical energy storage system in micro-grids. ISA Transactions, 102, 376–387. https://doi.org/10.1016/j.isatra.2020.02.016
  36. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. http://doi.org/10.1016/j.advengsoft.2013.12.007
  37. Mohd Saad, N., Sujod, M. Z., Muhammad Ridzuan, M. I., Abas, M. F., Jadin, M. S., & Abdul Kadir, M. F. (2024). A new optimisation framework based on Monte Carlo embedded hybrid variant mean–variance mapping considering uncertainties. Decision Analytics Journal, 10, 100368. https://doi.org/10.1016/j.dajour.2023.100368
  38. Paterson, C. (2002). Renewable energy in Antarctica. Australasian Science (Hawksburn), 23(5), 26–28. Retrieved May 18, 2025, from https://www.osti.gov/etdeweb/biblio/20307275
  39. Radosavljević, J., Arsić, N., Milovanović, M., & Ktena, A. (2020). Optimal placement and sizing of renewable distributed generation using hybrid metaheuristic algorithm. Journal of Modern Power Systems and Clean Energy, 8(3), 499–510. https://doi.org/10.35833/MPCE.2019.000259
  40. Saad, N. M. D., Sujod, M. Z., Abas, M. F., Sulaiman, M. H., & Rashid, M. I. M. (2018). Optimal placement and sizing of distributed generation based on MVMO-SH. In 5th IET International Conference on Clean Energy and Technology (CEAT2018), Kuala Lumpur, Malaysia 5–6 September 2018. https://doi.org/10.1049/cp.2018.1317
  41. Saad, N. M., Sujod, M. Z., Ridzuan, M. I. M., Abas, M. F., Jadin, M. S., Bakar, M. S., & Ahmad, A. Z. (2019a). Solar irradiance uncertainty management based on Monte Carlo-beta probability density function: Case in Malaysian tropical climate. Bulletin of Electrical Engineering and Informatics, 8(3), 1135–1143. https://doi.org/10.11591/eei.v8i3.1581
  42. Saad, N. M., Sujod, M. Z., Ridzuan, M. I. M., & Abas, M. F. (2019b). Optimization for distributed generation planning in radial distribution network using MVMO-SH. In 2019 IEEE 10th Control and System Graduate Research Colloquium, 2–3 August 2019 (pp. 115–120). https://doi.org/10.1109/ICSGRC.2019.8837082
  43. Sanz Rodrigo, J., Van Beeck, J., Gorlé, C., Berte, J., Dewilde, L., Cabooter, Y., & Pattyn, F. (2006). Wind power in the future Belgian Antarctic Research Station. In European Wind Energy Conference and Exhibition (EWEC 2006), February 27, 2006. Athens, Greece. European Wind Energy Association.
  44. Sathyaraj, J., & Sankardoss, V. (2024). A novel analysis of random forest regression model for wind speed forecasting. Cogent Engineering, 11(1), 2434617. https://doi.org/10.1080/23311916.2024.2434617
  45. Segovia, J. A., Toaquiza, J. F., Llanos, J. R., & Rivas, D. R. (2023). Meteorological variables forecasting system using Machine Learning and open-source software. Electronics (Switzerland), 12(4), 1007. https://doi.org/10.3390/electronics12041007
  46. Shadman Abid, M., Apon, H. J., Morshed, K. A., & Ahmed, A. (2022). Optimal planning of multiple renewable energy-integrated distribution system with uncertainties using Artificial hummingbird algorithm. IEEE Access, 10, 40716–40730. https://doi.org/10.1109/ACCESS.2022.3167395
  47. Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q., Summakieh, M. A., & Mirjalili, S. (2022). Particle swarm optimization: a comprehensive survey. IEEE Access, 10, 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859
  48. Snels, M., Colao, F., Cairo, F., Shuli, I., Scoccione, A., De Muro, M., Pitts, M., Poole, L., & Di Liberto, L. (2021). Quasi-coincident observations of polar stratospheric clouds by ground-based lidar and CALIOP at Concordia (Dome C, Antarctica) from 2014 to 2018. Atmospheric Chemistry and Physics, 21(3), 2165–2178. https://doi.org/10.5194/acp-21-2165-2021
  49. Solomon, S., Haskins, J., Ivy, D. J., & Min, F. (2014). Fundamental differences between Arctic and Antarctic ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6220–6225. https://doi.org/10.1073/pnas.1319307111
  50. Sujod, M. Z., & Erlich, I. (2013). Harmonics and common mode voltage in a DFIG with two-level and threelevel NPC converter using standard PWM techniques. IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, 10–13 November 2013 (pp. 1650–1655). https://doi.org/10.1109/IECON.2013.6699380
  51. Tin, T., Sovacool, B. K., Blake, D., Magill, P., El Naggar, S., Lidstrom, S., Ishizawa, K., & Berte, J. (2010). Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica. Renewable Energy, 35(8), 1715–1723. https://doi.org/10.1016/j.renene.2009.10.020
  52. Turner, J., Anderson, P., Lachlan-Cope, T., Colwell, S., Phillips, T., Kirchgaessner, A., Marshall, G. J., King, J. C., Bracegirdle, T., Vaughan, D. G., Lagun, V., & Orr, A. (2009). Record low surface air temperature at Vostok station, Antarctica. Journal of Geophysical Research: Atmospheres, 114(D24), D24102. https://doi.org/10.1029/2009JD012104
  53. Tyagi, A., Verma, A., & Panwar, L. K. (2019). Optimal placement and sizing of distributed generation in an unbalance distribution system using grey wolf optimisation method. International Journal of Power and Energy Conversion, 10(2), 208–224. https://doi.org/10.1504/ijpec.2019.098621
  54. Varetto, G. (2021, March 29). Turkey plans its own Antarctic station. Retrieved May 18, 2025, from https://www.waponline.it/turkey-plans-its-own-antarctic-station
  55. Vigna, L. (2022, December 5). Renewable energy in Antarctic Stations. Year-round stations. Tableau Public. Retrieved May 18, 2025, from https://public.tableau.com/app/profile/leandro.vigna/viz/RenewableEnergyinAntarcticStations/TrackerPublic
  56. White, G., & McCallum, A. (2018). Review of ice and snow runway pavements. International Journal of Pavement Research and Technology, 11(3), 311–320. https://doi.org/10.1016/j.ijprt.2017.11.002