Ukrainian Antarctic Journal

No 8 (2009): Ukrainian Antarctic Journal
Articles

Electrodynamics of tectonics processes and electromagnetic profiling of the Earth crust in Antarctic region

V. M. Pavlovych
Institute for Nuclear Research of NAS of Ukraine, Kyiv, National Antarctic Scientific Center, Kyiv
Yu. A. Bogdanov
Yugneftegazgeologia ltd., Odessa
V. M. Shuman
S. I. Subbotin Institute of Geophysics of NAS of Ukraine, Kyiv
V. M. Vaschenko
National Antarctic Scientific Center, Kyiv
Published December 16, 2009
Keywords
  • spontaneous electromagnetic emission,
  • litosphere,
  • mantle,
  • glacier,
  • Antarctica
How to Cite
Pavlovych, V. M., Bogdanov, Y. A., Shuman, V. M., & Vaschenko , V. M. (2009). Electrodynamics of tectonics processes and electromagnetic profiling of the Earth crust in Antarctic region. Ukrainian Antarctic Journal, (8), 171-185. https://doi.org/10.33275/1727-7485.8.2009.446

Abstract

This paper discusses the problems of the natural Earth pulse electromagnetic radiation occurrence and it's usage for the Earth interior exploration. The main attention is paid to radiation of the radiowave diapason (from ~1 kHz to ~1 MHz) which sources is located inside the Earth lithosphere. The nonlinear aspect of mechanic – electromagnetic interaction and electromagnetic wave propagation is discussed. The different models of such a radiation generation and propagation are considered. We have proposed the model of such radiation generation based on the initiation of optical vibrations of complex crystal lattice and therefore associated electromagnetic oscillations that appear due to formation and movement of point, linear (dislocation) and volume (microcracks, pores) defects of crystals. In solid state physics the electromagnetic radiation associated with inherent (optical) lattice vibrations is called polariton radiation. As long as intensity of defect creation is in direct proportion to deformation of the crystal, the intensity of the signal generated will be maximal in maximal deformation zones of the Earth crust. This fact allows the application of this radiation for the Earth crust structure study. Referring to polariton emission, the strained rock is active medium, i.e. the existence of radiation stimulates creation and vanishing of defects leading to radiation amplification. Such mechanism of non-linear amplification of electromagnetic waves together with “transparency windows” existence may explain the observed ultraweak attenuation of such electromagnetic waves in the Earth crust. In this work, we gave the examples of geopolariton radiation usage for investigations of the glaciers in Antarctic region.

References

  1. Bogdanov, Yu.A., Voronin, V.I., Uvarov, V.N., & Cherniakov, A.M. (2003). E`lektromagnitnoe proyavlenie struktury` nedr [Electromagnetic manifestation of deep structures]. Geofizicheskij zhurnal, 25(4), 117-124.
  2. Bogdanov Yu.A., Kobolev, V.P., Rusakov, O.M., & Zakharov, I.G. (2007). Geopolyaritonnoe zondirovanie gazonosny`x struktur severo-zapadnogo shel`fa Chernogo morya [Geopolariton sounding of gas-bearing structures of the NW shelf of the Black Sea]. Geologiya i polezny`e iskopaemy`e Mirovogo okeana, 22(4), 37-61.
  3. Bogdanov, Yu.A. (2008). K problematike rasprostraneniya vozmushhenij v geologicheskix sredax: kratkij obzor aktual`ny`x istochnikov i konstruktivny`e soobrazheniya [To the problem of spreading perturbations in the geologic media: a brief review of current sources and some constructive discussion]. Geofizicheskij zhurnal, 30(1), 96-110.
  4. Bogdanov, Yu.A., & Pavlovych, V.M. (2008). Neravnovesnoe izluchenie zemnoj kory` - indikator geodinamicheskix processov [Non-equilibrium radiation of the Earth’s crust indicates geodynamic processes]. Geofizicheskij zhurnal, 30(4), 12-24.
  5. Vaveliuk, Yu.P., & Yanovskaya, T.B. (2000). Modelirovanie procesov podgotovki zemletryasenij v sisteme litosferny`x blokov [Modelling processes of earthquake preparation in the lithosphere blocks system]. Fizika Zemli, 6, 4-13.
  6. Vasiliev, V.A., Romanovskiy, Yu.M., & Yakhno, V.G. (1987). Avtovolnovy`e processy` [Autowave processes]. Moscow, Nauka.
  7. Glensdorf, P., & Prigozhin, I. (1973). Termodinamicheskaya teoriya struktury`, ustojchivosti i fluktuacij [Thermodynamic theory of structure, stability and fluctuation]. Moscow, Mir.
  8. Ginsburg, V.L., & Tsytovich, V.N. (1984). Perexodnoe izluchenie i perexodnoe rasseyanie [The transitional irradiation and transitional dispersion]. Moscow, Nauka.
  9. Gohberg, M.B., Gufeld, I.L., Gershenson, N.I., & Pylypenko, V.A. (1985). E`lektromagnitny`e e`ffekty` pri razrushenii zemnoj kory` [Electromagnetic effects during the destruction of Earth’s crust]. Izvestiya AN SSSR. Fizika Zemli, 1, 72-87.
  10. Gulielmi, A.V. (1995). Uravnenie generacii sejsmomagnitny`x signalov [The equation of seismomagnetic signals generation]. Doklady` RAN, 342(3), 390-392.
  11. Gulielmi, A.V. (2006). Problemy` fiziki geoe`lektromagnitny`x voln (obzor) [Problems of geoelectroele]. Fizika Zemli, 3, 3-16.
  12. Gulielmi, A.V. (2007). Ul`tranizkochastotny`e volny` v kore i v magnitosfere Zemli [Ultra-low frequency waves in the crust and magnetosphere of the Earth]. Uspexi fizicheskix nauk, 177(12), 1257-1276.
  13. Gulielmi, A.V. (2008a). Inercionny`e e`ffekty` v kore i v magnitosfere Zemli [Inertial effects in the crust and magnitosphere of the Earth]. Fizika Zemli, 1, 50-56.
  14. Gulielmi, A.V. (2008b). Nelinejnost` e`lektromagnitny`x voln [Non-linearity of the electromagnetic waves]. Geofizicheskie issledovaniya, 9(3), 16-24.
  15. Gufeld, I.L., & Sobisevich, A.L. (2006). Impul`snaya regional`naya degazaciya Zemli, stimuliruyushhaya obrazovanie ochagov sil`ny`x zemletryasenij [Impulse regional degassing of Earth stimulating the appearance of powerful earthquake centers]. Degazaciya Zemli: geoflyuidy`, neft`, gaz i ix paragenezisy`. Materialy` Vserossijskoj konferencii (Moskva, 22-25 aprelya 2008 g.). Moscow, GEOS. 146-148.
  16. Davydov, Z.A., Zykov, V.S., & Mikhailov, A.S. (1994). Kinematika avtovolnovy`x struktur v vozbudimy`x sredax [Kinematics of autowave structures in excitable media]. Uspexi fizicheskix nauk, 161(8), 45-86.
  17. Danilenko, V.A. (1992). K teorii dvizheniya blochno-ierarxicheskix sred [To the theory of motion of block-hierarchical media]. Doklady` AN Ukrainy`, 2, 87-90.
  18. Dmitrievskiy, A.N. (2008). Avtovolnovy`e processy` formirovaniya flyuidonasy`shhenny`x zon Zemli [Autosoliton processes generating fluid-bearing areas in the Earth]. Degazaciya Zemli: geodinamika, geoflyuidy`, neft`, gaz i ix paragenezisy`. Materialy` Vserossijskoj konferencii (Moskva, 22-25 aprelya 2008). Moscow, GEOS. pp. 6-8.
  19. Dmitrievskiy, A.N., & Volodin, I.A. (2006). Formirovanie i dinamika e`nergoaktivny`x zon v geologicheskoj srede [Emergence and dynamics of energoactive areas in the geological medium]. Doklady` RAN, 411(3), 395-399.
  20. Dmitrievskiy, A.N., & Volodin, I.A. (2008). Avtosolitonny`e mexanizmy` degazacii Zemli. Degazaciya Zemli: geodinamika, geoflyuidy`, neft`, gaz i ix paragenezisy` [Autosoliton mechanisms of Earth’s degassing: geodynamics, geofluids, petroleum, gas and their paragenesis]. Materialy` Vserossijskoj konferencii (Moskva, 22-25 aprelya 2008). Moscow, GEOS. pp. 152-154.
  21. Dmitrievskiy, A.N., & Gridin, V.I. (2008). Innovacionny`e texnologii sistemno-geodinamicheskogo modelirovaniya gazonosny`x territorij. Degazaciya Zemli: geodinamika, geoflyuidy`, neft`, gaz i ix paragenezisy`. [Innovation technologies in system-geodynamic modelling of the gas-bearing areas] Metarialy` Vserossijskoj konferencii (Moscow, 22-25 April 2008). Moscow, GEOS. pp. 154-157.
  22. Dodd, P., Eiblek, G., & Norris, H. (1988). Solitony` i nelinejny`e volnovy`e uravneniya [Solitons and non-linear wave equations]. Moscow, Mir.
  23. Dubrovskiy, V.A., & Sergeev, V.N. (2006). Kratko- i srednesrochny`e predvestniki zemletryasenij kak proyavlenie nestabil`nosti skol`zheniya vdol` razlomov [Short- and medium-term predictors of earthquakes as manifestations od the instability of slipping along the breaks]. Fizika Zemli, 10, 11-18.
  24. Kerner, B.S., & Osipov, V.V. (1991). Avtosolitony` [Autosolitons]. Moscow, Nauka.
  25. Levshenko, V.T. (1995). Sverxnizkochastotny`e e`lektromagnitny`e signaly` litosfernogo proisxozhdeniya: Avtoref. diss. ...d-ra fiz.-mat. nauk ONFZ RAN [Super low-frequency electromagnetic signals of the lithospheric origin]. Moscow.
  26. Mandelbrot, B. (2002). Fractal geometry of Nature. Per. s angl. Moscow: Institut komp`yuterny`x issledovanij.
  27. Menshikov, L.I. (1999). Sverxizluchenie i nekotory`e rodstvenny`e yavleniya [Superradiation and some related phenomena]. Uspexi fizicheskix nauk, 169(2), 113-154.
  28. Nenovsky, P.I., & Boichev, B.V. (2004). Mexanizmy` vozniknoveniya sejsmoe`lektricheskix signalov v zemnoj kore [Mechanisms of seismoelectrical signals origin in the Earth’s crust]. Geomagnetizm i ae`ronomiya, 4, 545-553.
  29. Sadovskiy, M.A., Denshchikov, V.A., Kondratiev, V.N., Romanov, A.N., & Chubarov, V.M. (1982). O modeli verxnix sloev zemnoj kory` [On the model of the upper layers of the Earth’s crust]. Fizika Zemli, 9, 3-9.
  30. Sadovskiy, M.A., & Pisarenko, V.F. (1991). Sejsmicheskij process v blokovoj srede [Seismic process in block system]. Moscow, Nauka.
  31. Solitons. (1983). Ed. by R. Bullafa, F. Kodri. Moscow, Mir.
  32. Starostenko, V.I., Danilenko, V.A., Vengrovich, D.B., Kutas, R.I., Stifenson, R.A., & Stovba, S.N. (2001). Modelirovanie e`volyucii osadochny`x bassejnov s uchetom struktury` prirodnoj sredy` i processov samoorganizacii [Modelling evolution of sediment pools taking into account the structure of the natural environment and self-organisation processes]. Fizika Zemli, 12, 40-51.
  33. Stakhovsliy, I.R. (2007). Samopodobnaya sejsmogeneriruyushhaya struktura zemnoj kory`: obzor problemy` i matematicheskaya model` [Self-similar seismogenerating structure of the Earth’s crust: a review of the problem and a mathematical model]. Fizika Zemli, 12, 35-47.
  34. Surkov, V.V. (2000). E`lektromagnitny`e e`ffekty` pri zemletryaseniyax i vzry`vax [Electromagnetic effects during earthquakes and explosions]. Moscow, Izd. Mosk. inzh.-fiz. in.-ta. 235 s.
  35. Fractals in Physics. (1988). Pod red. L. P`etronero, E`. Tozati. Per. s angl. Moskva, Mir.
  36. Shuman, V.M., & Prychepiy, T.I. (2004). Optimal`ny`e rezhimy` e`lektromagnitny`x zondiruyushhix sistem s kontroliruemy`m vozbuzhdeniem polya v izotropny`x sredax s dispersiej [Optimal regimes of electromagnetic sounding systems with controlled field induction in isotropic media with dispersion]. Geofizicheskij zhurnal, 26(4), 55-62.
  37. Shuman, V.M. (2007). E`lektromagnitny`e signaly` litosfernogo proisxozhdeniya v sovremenny`x nazemny`x i distancionny`x zondiruyushhix sistemax [Electromagnetic signals of the lithospheric origin in current terrestrial and remote sounding systems]. Geofizicheskij zhurnal, 29(2), 3-16.
  38. Shuman, V.M. (2008). Uravnenie generacii spontanny`x e`lektromagnitny`x signalov v sisteme litosferny`x blokov [The equation of spontaneous electromagnetic signals generation in the system of lithosphere blocks]. Geofizicheskij zhurnal, 30(1), 42-48.
  39. Shuman, V.M., & Bogdanov, Yu. A. (2008a). Impul`snoe e`lektromagnitnoe izluchenie litosfery`: sporny`e voprosy` teorii i polevoj e`ksperiment [Impulse electromagnetic radiation of the lithosphere: arguable positions of theory and the field experiment]. Geofizicheskij zhurnal, 30(2), 32-41.
  40. Shuman, V.M., & Bogdanov, Yu.A. (2008b). E`lektromagnitnaya e`missiya litosfery`: prostranstvennaya struktura i vozmozhny`e mexanizmy` generacii [Electromagnetic emission of the lithosphere: spatial structure and possible mechanisms of generation]. Geofizicheskij zhurnal, 30(6), 39-50.
  41. Bak, P., & Tang, C. (1989). Earthquakes as self-organized criticality. J. Geophys. Res., 94(15), 635-637.
  42. Gershenzon, N., & Bambakidis, G. (2001). Modeling of seismo-electromagnetic phenomena. Russian J. Earth Sci., 3(4), 247-275.
  43. Li, Y.-G., Leary, P.C., Aki, K., & Malin, P.E. (1990). Seismic Trapped Modes in Orovill and San Andreas Zones. Science, 249, 763-766.