Ukrainian Antarctic Journal

No 1(18) (2019): Ukrainian Antarctic Journal
Articles

Superplume in the Antarctic sector of the Pacific: position, genesis, age

V. P. Usenko
Institute of Geological Sciences, National Academy of Sciences of Ukraine, 55B O. Gonchara Str., Kyiv, 01054, Ukraine
R. Ch. Greku
Institute of Geological Sciences, National Academy of Sciences of Ukraine, 55B O. Gonchara Str., Kyiv, 01054, Ukraine
Published December 13, 2019
Keywords
  • Ross superplume,
  • Antarctica,
  • Southwest Pacific,
  • 100 Ma superplume event
How to Cite
Usenko, V. P., & Greku, R. C. (2019). Superplume in the Antarctic sector of the Pacific: position, genesis, age. Ukrainian Antarctic Journal, (1(18), 18-44. https://doi.org/10.33275/1727-7485.1(18).2019.128

Abstract

The study of the Earth structure and geodynamic is one of constitutive purposes of Earth sciences. The aim of our article is to describe Ross superplume that was discovered in the southwestern part of the Pacific Ocean near and under the western margin of Antarctica. This plume was not mentioned in seismic tomographic literature and in catalogs. Ross superplume was detected by gravimetric tomography method that was developed by Rudolf Greku in Institute of Geological Sciences, National Academy of Sciences of Ukraine. Authours used gravitomography data to describe the complex geometry of the superplume, evidences of the segmental collapse of the Paleo-Pacific slab (one of them to a depth of 4800 km), and its location within the pre-existing geothermal convective flow, under the influence of which the southwestern part of the Pacific Ocean, West Antarctica and the western part of East Antarctica are still located. Main conclusions. Combined effect of such factors as presence of geothermal interpolar flux and enter of slab into the outer liquid core within this flux led to formation of superplume. Two different parts of Ross superplume were formed in different structural-density conditions of lithospheric lower-mantle: the southern part was formed near and under the Antarctic obduction margin; the northern part was formed beneath the oceanic lithosphere. Ross superplume formation happened simultaneously with the 100 Ma event of the global reorganization of lithospheric structures, which drivers are poorly understood yet. We suppose that trigger of this event was explosive formation of Ross superplume. Our results were interpreted using available open literature data about this region and they do not contradict existing understanding of geodynamic history of the region.

References

  1. Vse lavovyye ozera planety [All lava lakes of the planet]. 2016. http://fuckingnews.ru/travel/vse-lavovye-ozera planety.html (accessed: 01.08.2019).
  2. Gilat A., Vol A. 2011. Primary hydrogen and helium are the most powerful source of energy for the Earth evolution, earthquakes, and volcanic eruptions. Israel Union of Repatriate Scientists. Electron's scientific seminar, http://www.elektron2000.com/node/822 (accessed: 01.08.2019).
  3. Gozhik, P.F., Greku, R.Kh., Bogillo, V.I., Bazylevska, M.S., Tkachenko, T.R., Greku, K.Yu. 2019. The main research directions of the department of geology and geoecology of the Antarctic of the Institute of Geological Sciences of NAS of Ukraine. Geol. zhurn., 1 (366), 5-26. https://doi.org/10.30836/igs.1025-6814.2019.1.159236
  4. Goncharov M.A. 2007. Kinematic model of continental drift as a reason for the expansion of the southern and reduction of the northern hemispheres of the Earth. Rotational processes in geologists and physics. Ed. E.E. Milanovsky. M.: KomKniga, 279-286. http://www.geokniga.org/bookfiles/geokniga-rotacionnye-processy.pdf (accessed: 01.08.2019).
  5. Goncharov M.A., Lubnina N.V., Raznitsin Yu.N., Barkin Yu.V. 2012. Contribution of the cyclic meridional component of continental drift to the evolution of Earth's supercontinents: global paleomagnetic geodynamics. Scientific Conference Lomonosov Readings, Moscow State University, April 2012, Section of Geology. http://geo.web.ru/pubd/2012/06/01/0001186421/pdf/goncharov_et_al_2012.pdf (accessed: 01.08.2019).
  6. Greku R.Kh., Bondar K.M. 2003. Algorithm and mathematical modeling of the density structure of the Earth's interior according to the geoid. Geoinformatics, 2, 66-69.
  7. Greku, R.Kh., Gozhik, P.F., Litvinov, V.A., Usenko, V.P., Greku, T.R. 2009. Atlas of the Antarctic deep structure with the gravimetric tomography. Ukrainian Antarctic Journal, 8, 32-35. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128547/07-Greku.pdf?sequence=1 (accessed:01.08.2019).
  8. Greku, R.Kh., Greku, T.R. 2009. Deep Structure of the Antarctic Plate's Boundary Zone Along Mid-Ocean Ridges on the Cross-Sections and Lateral Slices. Ukrainian Antarctic Journal, 8, 88-94.
  9. Grushinskiy A.N., Stroyev, P.A., Koryakin, Ye.D., 2004. Stroyeniye litosfery Antarktiki i yeye izostaticheskoye sostoyaniye [The structure of the lithosphere of Antarctica and its isostatic state]. Otechestvennaya geologiya, 2, 30-36.
  10. Kuz'min, M.I., Yarmolyuk, V.V. 2011. Glubinnaya geodinamika, ili kak rabotayet mantiya Zemli [Deep Geodynamics, or How the Earth's Mantle Works]. Nauka iz pervy'kh ruk [Science First Hand], 42, 6. https://scfh.ru/papers/glubinnaya-geodinamika-geodinamika-ili-kakrabotaet-mantiya-zemli/ (accessed:01.08.2019).
  11. Orovetskiy, YU.P., Kobolev, V.P. 2008. Svyaz' geostruktur glavnykh poverkhnostey Zemli [Connection of geostructures of the main surfaces of the Earth]. Svyaz' poverkhnostnykh struktur zemnoy kory s glubinnymi. Mat-ly XIV MK. [Relationship between the surface and deep structures of the earth's crust. Proceedings of the 14th International Conference, 27-31 October, 2008]. Petrozavodsk, 27-31.10.2008. CH. 1, 99-102. www.spsl.nsc.ru/FullText/konfe/svjaz_poverhn_strukt2.pdf (accessed: 01.08.2019).
  12. Teterin, D.Ye. 2008. Bottom relief, deep structure and geodynamics of transitional zones of West Antarctica.: author's abstract for the degree of Doctor of Geological and Mineralogical Sciences. Moscow. 50. https://www.twirpx.com (accessed: 01.08.2019).
  13. Tyapkin, K.F. 2014. A new view on geotectogenesis caused by a change in a position of the earth's tectonosphere about its axis of rotation. Geology and Mineral Resources of World Ocean, 1, 5-19. https://cyberleninka.ru/article/n/novyy-vzglyad-na-geotektogenez-obuslovlennyy-izmeneniem-polozheniya tektonosfery-zemli-otnositelno-osi-ee-vrascheniya (accessed: 01.08.2019).
  14. Ekosistemy i blagosostoyaniye cheloveka. Sintez [Ecosystems and Human Well being: Synthesis]. 2005. Doklad mezhdunarodnoy programmy Otsenka ekosistem na poroge tysyacheletiya (OE) [Millennium Ecosystem Assessment]. Island Press, Washington, DC. 138. https://www.millenniumassessment.org/documents/document.791.aspx.pdf (accessed: 01.08.2019).
  15. Abbot, D.H. and Isley Ann, E. 2002. The intensity, occurrence, and duration of superplume events and eras over geological time. J. Of Geodynamics, 34 (2), 265-307. doi: 10.1016/S0264-3707(02)00024-8. https://www.researchgate.net/publication/240430428_The_intensity_occurrence_and_duration_of_superplume_ events_and_eras_over_geological_time (accessed: 01.08.2019). https://doi.org/10.1016/S0264-3707(02)00024-8
  16. Bialas, R. 2007. The Transantarctic Mountains. TransAntarctic Mountains TRANsition Zone (TAM TRANZ Project). In Elliot, D.H., Lyons, W.B. and Everett L.R. TransAntarctic Mountains TRANsition Zone (TAM TRANZ Project): Multidisciplinary Research in the Central and Southern Transantarctic Mountains. Byrd Polar Research Center, Miscellaneous Series 430, Byrd Polar Research Center, The Ohio State University, Columbus, OH., 99 pages. http://bprc.osu.edu/workshops/tam_2006/report_final.pdf (accessed: 01.08.2019).
  17. Bialas, R.W., Buck, W.R. Studinger, M., Fitzgerald, P.G. 2007. Plateau collapse model for the Transantarctic Mountains-West Antarctic Rift System: Insights from numerical experiments. J. Geology, 35; 8, 687-690. http://www.geology.cwu.edu/facstaff/huerta/g501/pdf/Bialas2007.pdf (accessed: 01.08.2019). https://doi.org/10.1130/G23825A.1
  18. Breitsprechera, K., Thorkelsonb, D.J. 2009. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464, 1-4, 10-20. https://www.sciencedirect.com/science/article/pii/S0040195108001054 (accessed:01.08.2019). https://doi.org/10.1016/j.tecto.2008.02.013
  19. Cande, C.S., Raymond, C.A., Stock, J., Haxby, W.F. 1995. Geophisics of the Pitman Fracture Zone and Pacific-Antarctic Plate Motion During the Cenozoic. Science, 270, 947-953. https://doi.org/10.1126/science.270.5238.947
  20. Choudhuri, M. and Nemčok, M. 2017. Chapter 2. Plumes and Hotspots. In: Mantle Plumes and Their Effects. Springer Briefs in Earth System Sciences, X, 137. 19-42. doi: 10.1007/978-3-319-44239-6_2. http://www.springer.com/978-3-319-44238-9 (accessed: 01.08.2019).
  21. Condie, K.C. 2001. Mantle plumes and their records in Earth history. Cambridge Univesity Press, 320. www.geokniga.org/bookf i les/geokniga-condiemant leplumes2001.pdf (accessed: 01.08.2019).
  22. Condie, K.C. 2005. Earth as an Evolving Planetary System. Elsevier, 350. https://books.google.com.ua/books/about/Earth_as_an_Evolving_Planetary_System.html?id=I_thUWi5I8C&redir_esc=y (accessed: 01.08.2019).
  23. Courtillot, V., Davaille, A., Besse, J., and Stock, J. 2008. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters, 205, 295-308. http://www.olegyakupov.com/Translations/Three_Distinct_Types_Hotspots_RU.htm (accessed: 01.08.2019). https://doi.org/10.1016/S0012-821X(02)01048-8
  24. Expedition 330 Scientists, 2011. Louisville Seamount Trail:implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots. IODP Prel.Rept., 330. doi:10.2204/iodp.pr.330.2011. 174. http:// publications.iodp.org/preliminary_report/330/330PR.PDF (accessed: 01.08.2019).
  25. Finn, C.A., Müller, R.D. and Panter, K.S. 2005. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem.Geophys. Geosyst., 6, Q02005. http://www.agu.org/journals/ABS/2005/2004GC000723.shtml (accessed: 01.08.2019). https://doi.org/10.1029/2004GC000723
  26. Fitzgerald, P.G., Studinger, M., Bialas, R.W., Buck, W. 2007a. Geological and Tectonic Evidence for the Formation and Extensional Collapse of the West Antarctic Plateau:Implications for the Formation of the West Antarctic Rift System and the Transantarctic Mountains. American Geophysical Union, Fall Meeting 2007, abstract #T41A-0378/. http://adsabs.harvard.edu/abs/2007 AGUFM.T41A0378F (accessed: 01.08.2019).
  27. Fitzgerald, P.G., Bialas, R.W., Buck, W.R. and Studinger, M. 2007b. A plateau collapse model for the formation of the West Antarctic rift system/Transantarctic Mountains, in Antarctica. A Keystone in a Changing World - Online Proceedings of the 10th ISAES X, edited by A. K. Cooper and C. R. Raymond et al. USGS Open-File Report 2007 1047, Extended Abstract 087, 4 (accessed: 01.08.2019).
  28. Goncharov, M.A., Raznitsin, Yu.N., Barkin, Yu.V. 2012. Specific features of deformation of the continental and oceanic lithosphere as a result of the Earth core northern drift. Geodynamics & Tectonophysics, 3, 1, 27-54. https://www.researchgate.net/publication/272729790_Specific_features_of_deformation_of_the_continental_and_oceanic_lithosphere_as_a_result_of_the_Earth_core_northern_drift (accessed: 01.08.2019). https://doi.org/10.5800/GT-2012-3-1-0060
  29. Greku, R.Kh., Usenko, V.P. and Greku, T.R. 2006. Geodynamic Features and Density Structure of the Earth's Interior of the Antarctic and Surrounded Regions with the Gravimetric Tomography Method. In: Fütterer D.K., Damaske D., Kleinschmidt G., Miller H., Tessensohn F. (eds). Antarctica. Springer Berlin Heidelberg. Theme 7, 36 -375. doi: 10.1007/3-540-32934-X. https://link.springer.com/chapter/10.1007/3-540-32934-X_46 (accessed:01.08.2019).
  30. Greku, R.Kh., Gozhik, P.F., Litvinov, V.A., Usenko, V.P., Greku, T.R. 2009. Atlas of the Antarctic deep structure with the Gravimetric Tomography. Kiev, 67.
  31. Grimm, N.B, F.S. Chapin, III, Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P. A., Schimel, J., and Williamson, C. E. 2013. The impacts of climate change on ecosystem structure and function. Front Ecol Environ., 11(9), 474-482. https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1890/120282 (accessed:01.08.2019). https://doi.org/10.1890/120282
  32. Gupta, S., Zhao, D., Rai, S.S. 2009. Seismic imaging of the upper mantle under the Erebus hotspot in Antarctica. Gondwana Research., 16, 1, 109-118. https://doi.org/10.1016/j.gr.2009.01.004
  33. Gurnis, M. and Müller, R. D. 2003. Origin of the Australian-Antarctic Discordance from an ancient slab and mantle wedge. Geol. Soc. Australia. Spec. Publ. 22, and Geol. Soc. America., 372, 417-429. https://www.researchgate.net/publication/235997954_Origin_of_the_Australian-Antarctic_Discordance_from_an_ancient_slab_and_mantle_wedge (accessed: 01.08.2019).
  34. Hansen, S.E., Graw, J.H., Kenyon, L.M., Nyblade, A.A., Wiens, D.A., Aster, R.C., Huerta, A.D., Anandakrishnan, S., and Wilson, T. 2014. Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica. Earth and Planetary Science Letters, 408, 66-78. http://epsc.wustl.edu/seismology/doug/wpcontent/uploads/2017/10/Hansen_etal_EPSL_2014.pdf (accessed:01.08.2019). https://doi.org/10.1016/j.epsl.2014.09.043
  35. Harries, P.J. and Little, C.T.S. 2015. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol., 154, 39-66. https://www.sciencedirect.com/science/article/pii/S0031018299000863?via%3Dihub (accessed: 01.08.2019). https://doi.org/10.1016/S0031-0182(99)00086-3
  36. Huerta, A.D. 2007. Byrd drainage system: evidence of a Mesozoic West Antarctic Plateau, in Antarctica. A Keystone in a changing World - Online Proceedings of the 10th ISAES X. ed. by A. Cooper and C. Raymond et al., USGS Open-File Report 2007-1047, Extended Abstract 091, 5. https://www.researchgate.net/publication/22849-1254_Byrd_drainage_system_evidence_of_a_Mesozoic_West_Antarctic_Plateau (accessed: 01.08.2019).
  37. Koppers A.A.P., Duncan, R.A., Steinberger, B. 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems., 5, 6. http://onlinelibrary.wiley.com/doi/10.1029/2003GC000671/abstract (accessed: 01.08.2019). https://doi.org/10.1029/2003GC000671
  38. Larson, R.L. 1991a. Latest pulse of Earth; evidence for a Mid-Cretaceous super plume. Geology, 19, 6, 547-550. https://websites.pmc.ucsc.edu/~rcoe/eart206/Larson_superplume1_Geology91.pdf (accessed: 01.08.2019). https://doi.org/10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
  39. Larson, R.L. 1991b. Geological consequences of superplumes. Geology, 19, 10, 963-966. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/19/10/963/205223/geological-consequences-of-superplumes?redirectedFrom=fulltext (accessed: 01.08.2019). https://doi.org/10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2
  40. Li, Z.X., Zhong, S. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors,176, 143-156. https://ui.adsabs.harvard.edu/abs/2009PEPI..176..143L/abstract. https://doi.org/10.1016/j.pepi.2009.05.004
  41. Luyendyk, B.P. 1995. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab apture. Geology, 373-376. http://www.geol.ucsb.edu/faculty/luyendyk/Luyendyk_pdf/LuyendykGEOL'95.pdf (accessed:01.08.2019). https://doi.org/10.1130/0091-7613(1995)023<0373:HFCROE>2.3.CO;2
  42. Luyendyk, B.P., Sorlien, C.C., Wilson, D.S., Bartek, L.R., Siddoway, C.S. 2001. Structural and tectonic evolution of the Ross Sea rift in the Cape Colbeck region, Eastern Ross Sea, Antarctica. Tectonics, 20, 6, 933-958. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002GC000462 (accessed: 01.08.2019). https://doi.org/10.1029/2000TC001260
  43. Luyendyk, B.P., Wilson, D.S. and Siddoway, C.S. 2003. Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development. Geochem. Geophys. Geosyst., 4(10), 1090. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2002GC000462 (accessed:01.08.2019). https://doi.org/10.1029/2002GC000462
  44. Mandea, M., Holme, R., Pais, A., Pinheiro, K., Jackson, A., Verbanac, G. 2010. Geomagnetic Jerks: Rapid Core Field Variations and Core Dynamics. Space Sci Rev., 155, 147-175. https://link.springer.com/article/10.1007%2Fs11214-010-9663-x (accessed: 01.08.2019). https://doi.org/10.1007/s11214-010-9663-x
  45. Matthews, K.J., Seton, M., Müller, R.D. 2012. A globalscale plate reorganization event at 105-100 Ma. Earth and Planetary Science Letters, 355-356, 283-298. https://www.researchgate.net/publication/2584-65505_Was_there_a_global-scale_plate_reorganisation_event_at_ 100_Ma (accessed: 01.08.2019). https://doi.org/10.1016/j.epsl.2012.08.023
  46. Matthews, K.J., Seton, M., Muller, R.D. 2011. Was there a global-scale plate reorganisation event at 100 Ma?American Geophysical Union. Fall Meeting 2011, abstract id.T23D-2446. http://adsabs.harvard.edu/abs/2011- AGUFM.T23D2446M (accessed: 01.08.2019).
  47. Montelli, R., Nolet, G., Dahlen, F.A., and Masters, G. 2006. A catalogue of deep mantle plumes: New results finite-frequency tomography. Geochem. Geophys. Geosyst., 7, 11. http://onlinelibrary.wiley.com/doi/10.1029/2006GC001248/full (accessed: 01.08.2019). https://doi.org/10.1029/2006GC001248
  48. Orosei, R., Lauro, S.E., Pettinelli, E. A., Cicchetti, M., Coradini, B., Cosciotti, F., Di Paolo et al. 2018. Radar evidence of subglacial liquid water on Mars. Science, 361, 6401, 490-493. http://science.sciencemag.org/content/361/6401/490 (accessed: 01.08.2019).
  49. Ramirez, C., Nyblade, A., Emry, E.L., Julia, J., Sun, X., Anandakrishnan, S., Wiens, D.A., Aster, R.C., Huerta, A.D, Winberry, P., Wilson, T. 2017. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths. Geophysical Journal International, 211, 3, 1328-1340. https://academic.oup.com/gji/article-abstract/211/3/ 1328/4064366 (accessed: 01.08.2019). https://doi.org/10.1093/gji/ggx333
  50. Ritsema, J., Allen, R.M. 2003. The elusive mantle plume. Earth and Planetary Science Letters, 207, 1-12. https://rallen.berkeley.edu/pub/2002ritsema/RitsemaAllen-PlumesEPSL2003.pdf (accessed: 01.08.2019). https://doi.org/10.1016/S0012-821X(02)01093-2
  51. Russo, R.M., VanDecar, J.C., Comte D. et al. 2010. Subduction of the Chile Ridge: Upper mantle structure and flow. GSA Today, 20, 9, 4-10. doi: 10.1130/GSATG61A.1. http://www.geosociety.org/gsatoday/archive/20/9/pdf/i1052-5173-20-9-4.pdf (accessed: 01.08.2019).
  52. Siddoway, C. S., Sass, L. C. and Esser, R. P. 2005. Kinematic history of western Marie Byrd Land, West Antarctica:direct evidence from Cretaceous mafic dykes. Geological Society. London, Special Publications, 246(1), 417-438. http://sp.lyellcollection.org/content/246/1/417.abstract (accessed: 01.08.2019). https://doi.org/10.1144/GSL.SP.2005.246.01.17
  53. Siddoway, C.S. 2008. Tectonics of the West Antarctic Rift System: New Light on the History and Dynamics of Distributed Intracontinental Extension. Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Science. Cooper, A. K., Barrett, P. J., Stagg H. et al. Washington, DC: The National Academies Press, 91-114. http://books.nap.edu/openbook.php?record_id=12168&page=101 (accessed:01.08.2019). https://doi.org/10.3133/ofr20071047KP09
  54. Sourkhabi, R . 2009. Mid Cretaceous Source Rock Enigma. GeoExPro, 6, 5, 24-30. http://www.geoexpro.com/articles/2009/05/mid-cretaceous-source-rock-enigma (accessed: 01.08.2019).
  55. Spasojevic, S., Gurnis, M. and Sutherland, R. 2010a. Mantle upwellings above slab graveyards linked to the global geoid lows. Nature Geoscience, 3, 435-438. https://www.academia.edu/25286200/Mantle_up-wellings_above_slab_graveyards_linked_to_the_global_geoid_lows (accessed: 01.08.2019). https://doi.org/10.1038/ngeo855
  56. Spasojevic, S., Gurnis, M. and Sutherland, R. 2010b. Inferring mantle properties with an evolving dynamic model of the Antarctica-New Zealand region from the Late Cretaceous. J. Geophys. Res., 115. B05402. http://authors.library.caltech.edu/18551/ (accessed: 01.08.2019). https://doi.org/10.1029/2009JB006612
  57. Storey, B.C. 1993. Tectonic controls on Gondwana break up models: evidence from the proto-Pacific margin of Antarctica and the southern Andes. Second ISAG. Oxford (UK), 21-23.09.1993, 551-554. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques2/38492.pdf (accessed: 01.08.2019).
  58. Storey, B.C., Vaughan, A.P.M. and Riley, T.R. 2013. The links between large igneous provinces, continental breakup and environmental change: evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1), 17-30. http://nora.nerc.ac.uk/502766/1/TRAES04%20%281300011%29%20-%20First%20proof%20%282%29.pdf (accessed:01.08.2019).
  59. Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J., Bradshaw, J.D. and Kelley, S. 1999. Mantle plumes and Antarctica-New Zealand rifting; evidence from Mid-Cretaceous mafic dykes. Journal of the Geological Society of London, 156, 4, 659-671. https://app.dimensions.ai/details/publication/pub.1047741860 (accessed: 01.08.2019). https://doi.org/10.1144/gsjgs.156.4.0659
  60. Sutherland, R., Spasojevic, S. and Gurnis, M. 2010. Mantle upwelling after Gondwana subduction death explains anomalous topography and subsidence histories of eastern New Zealand and West Antarctica. Geology, 38, 155-158. http://geology.gsapubs.org/content/38/2/155.abstract (accessed: 01.08.2019). https://doi.org/10.1130/G30613.1
  61. Suzuki, N., Utsunomiya A., Maruyama S. 2001. The History of the Pacific Superplume. American Geophysical Union, Fall Meeting, abstract #T42A-0917. https://ui.adsabs.harvard.edu/abs/2001AGUFM.T42A0917S/abstract (accessed: 01.08.2019).
  62. Timm, Chr., Bassett, D, Graham, I.J., Leybourne, M.I., de Ronde, C.E.J., Woodhead, J., Layton-Matthews, D. and Watts, A.B. 2013. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga -Kermadec arc. Nature Communications, 4, Article number:1720. doi:10.1038/ncomms2702. https://www.nature.com/articles/ncomms2702 (accessed: 01.08.2019). https://doi.org/10.1038/ncomms2702
  63. Tarduno, J., Bunge, H.-P., Sleep, N., Hansen, U. 2009. The Bend Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind. Science, 324. http://www.mantleplumes.org/WebDocuments/Tarduno2009.pdf (accessed: 01.08.2019). https://doi.org/10.1126/science.1161256
  64. Timofeeff, M.N., Lowenstein, T.K., da Silva, M.A.M., Harris, N.B. 2006. Geochimica et Cosmochimica Acta, 70,197-1994. ftp://ftp.soest.hawaii.edu/engels/Stanley/Other/ Timofeeff-06.pdf (accessed: 01.08.2019). https://doi.org/10.1016/j.gca.2006.01.020
  65. Torsvik, T.H., Gaina, C. and Redfield, T.F. 2008a. Antarctica and Global Paleogeography: From Rodinia, Through Gondwanaland and Pangea, to the Birth of the Southern Ocean and the Opening of Gateways. In: Cooper, A. K., P. J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team, eds. Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies Press, 125-140. http://www.nap.edu/openbook.php?record_id=12168&page=125 (accessed: 01.08.2019). https://doi.org/10.3133/ofr20071047KP11
  66. Torsvik, T.H., Müller, R.D., Van der Voo, R., Steinberger, B. and Gaina, C. 2008b. Global plate motion frames: toward a unified model. Rev. Geophys., 46, 3 http://onlinelibrary.wiley.com/doi/10.1029/2007RG000227/abstract (accessed: 01.08.2019). https://doi.org/10.1029/2007RG000227
  67. Torsvik, T.H., van der Voo, R., Doubrovine, P.V., Burke, K., Steinberger, B., Ashwal, L.D., Trønnes, R.G., Webb, S.J. and Bull, A.L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. PNAS, 111 (24) 8735-8740. https://www.pnas.org/content/111/ 24/8735 (accessed: 01.08.2019). https://doi.org/10.1073/pnas.1318135111
  68. Vaughan, A.P.M. and Livermore, R.A. 2005. Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions. Geological Society, London, Special Publications. 246, 143-178. http://nora.nerc.ac.uk/4296/1/Episodicity_of_terrane_accretion.pdf (accessed: 01.08.2019). https://doi.org/10.1144/GSL.SP.2005.246.01.05
  69. Veevers, J.J., Walter, M.R. and Scheibner, E. 1997. Neoproterozoic Tectonics of Australia-Antarctica and Laurentia and the 560 Ma Birth of the Pacific Ocean Reflect the 400 m.y. Pangean Supercycle. The Journal of Geology, 105, 2, 225-242. http://www.journals.uchicago.edu/doi/ 10.1086/515914 (accessed: 01.08.2019). https://doi.org/10.1086/515914
  70. Wannamaker, P.E., Stodt, J.A., Pellerin, L., Olsen, S.L. and Hall, D.B. 2004. Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements. Geophys. J. Int., 157, 36-54. http://adsabs.harvard.edu/full/2004GeoJI.157...36W (accessed: 01.08.2019). https://doi.org/10.1111/j.1365-246X.2004.02156.x
  71. Weaver, S.D., Storey, B.C., Pankhurst, R.J., Mukasa, S.B., DiVenere, V.J., and Bradshaw, J.D. 1994. Antarctica-New Zealand rifting and Marie Byrd Land lithospheric magmatism linked to ridge subduction and mantle plume activity. Geology, 22, 9, 811-814. http://geology.gsapubs.org/content/22/9/811.abstract (accessed:01.08.2019). https://doi.org/10.1130/0091-7613(1994)022<0811:ANZRAM>2.3.CO;2
  72. Winberry, J.P., Anandakrishnan, S. 2004. Marie Byrd Land hotspot. Geology, 32 (11), 977-980. https://www.researchgate.net/publication/234039542_Crustal_stru-cture_of_the_West_Antarctic_rift_system_and_Marie_Byrd_Land_hotspot (accessed: 01.08.2019). https://doi.org/10.1130/G20768.1