Ukrainian Antarctic Journal

No 1 (2021): Ukrainian Antarctic Journal
Articles

Isolation and characterization of culturable actinobacteria associated with Polytrichum strictum (Galindez Island, the maritime Antarctic)

O. Gromyko
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
S. Tistechok
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
I. Roman
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
O. Aravitska
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
A. Luzhetskyy
Saarland University, Saarbrücken, 66123, Germany
I. Parnikoza
State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, Kyiv, 01601, Ukraine; Institute of Molecular Biology and Genetic NAS of Ukraine, Kyiv, 03143, Ukraine
V. Fedorenko
Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
Published July 28, 2021
Keywords
  • Antarctic actinobacteria,
  • Polytrichum strictum,
  • antimicrobial activity,
  • biosynthetic genes
How to Cite
Gromyko, O., Tistechok, S., Roman, I., Aravitska, O., Luzhetskyy, A., Parnikoza, I., & Fedorenko, V. (2021). Isolation and characterization of culturable actinobacteria associated with Polytrichum strictum (Galindez Island, the maritime Antarctic). Ukrainian Antarctic Journal, (1), 82-97. https://doi.org/10.33275/1727-7485.1.2021.668

Abstract

The main objective of the study is the evaluation of the diversity of actinobacteria associated with Polytrichum strictum — dominant species of widespread Antarctic Тall moss turf subformation and their characteristics as the producers of biologically active compounds. The actinobacterial isolates were isolated by direct inoculation, phenol pretreatment, and heated treatment. The cultural properties of the isolates were evaluated using diagnostic media. The antimicrobial activity of the isolates was determined by the point inoculations method. The phylogenetic analysis was based on sequence analysis of the 16S rRNA gene. The biosynthetic genes screening was performed using polymerase chain reaction. A total of 23 actinobacterial isolates associated with P. strictum were isolated, the four identified genera being Streptomyces (7 isolates), Micromonospora (14 isolates), Kribbella (1 isolate), and Micrococcus (1 isolate). Eight psychrotrophic strains of all identified genera were identified. The optimal pH values for all isolates were in the range 6–10. Four isolates grew on the medium with 7.5% NaCl. A significant number of the isolates showed a wide range of enzymatic activities. Antagonists of a wide range of pathogenic microorganisms were found, including against multidrug-resistant strain of Candida albicans and Methicillin-resistant Staphylococcus aureus. Some strains were active against phytopathogenic bacteria, namely three strains against Erwinia amylovora, one strain against Agrobacterium tumefaciens, and one strain against  Pectobacterium carotovorum. More than half of the isolates showed antifungal activity against Fusarium oxysporum and Aspergillus niger. The biosynthetic genes involved in synthesizing a wide range of bioactive compounds were found in more than 80% of isolates. Antarctic actinobacteria isolated in this study demonstrate potential as the producers of a wide range of biologically active compounds. Further studies of these actinobacteria may lead to the identification of previously unknown biologically active compounds.

References

  1. Anderson, A. S., Clark, D. J., Gibbons, P. H., & Sigmund, J. M. (2002). The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes. Journal of Industrial Microbiology and Biotechnology, 29(2), 60–69. https://doi.org/10.1038/sj.jim.7000260
  2. Axenov-Gribanov, D. V., Voytsekhovskaya, I. V., Tokovenko, B. T., Protasov, E. S., Gamaiunov, S. V., Rebets, Y. V., Luzhetskyy, A.N., & Timofeyev, M.A. (2016). Actinobacteria isolated from an underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia as sources of novel biologically active compounds. PLoS ONE,11(2), e0149216. https://doi.org/10.1371/journal.pone.0149216
  3. Ayuso, A., Clark, D., González, I., Salazar, O., Anderson, A., & Genilloud, O. (2005). A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Applied Microbiology and Biotechnology, 67, 795–806. https://doi.org/10.1007/s00253-004-1828-7
  4. Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49, 10–24. https://doi.org/10.1007/s00248-004-0249-6
  5. Baltz, R. H. (2019). Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. Journal of Industrial Microbiology and Biotechnology, 46(3–4), 281–299. https://doi.org/10.1007/s10295-018- 2115-4
  6. Bates, J. L., & Liu, P. V. (1963). Complementation of lecithinase activities by closely related pseudomonads: Its taxonomic implication. Journal of bacteriology, 86(3), 585–592. https://doi.org/10.1128/jb.86.3.585-592.1963
  7. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  8. Boumehira, A. Z., El-Enshasy, H. A., Hacène, H., Elsayed, E. A., Aziz, R., & Park, E. Y. (2016). Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnology and Bioprocess Engineering, 21, 199–223. https://doi.org/10.1007/s12257-015-0574-2
  9. Carro, L., Castro, J. F., Razmilic, V., Nouioui, I., Pan, C., Igual, J. M., Jaspars, M., Goodfellow, M., Bull, A.T., Asenio, J. A., & Klenk, H.-P. (2019). Uncovering the potential of novel micromonosporae isolated from an extreme hyperarid Atacama Desert soil. Scientific Reports, 9, 4678. https://doi.org/ 10.1038/s41598-019-38789-z
  10. Chater, K. F. (2013). Streptomyces. In S. Maloy, K. Hughes (Eds.), Brenner’s Encyclopedia of Genetics (2nd ed., pp. 565–567). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01483-2
  11. Ding, T., Yang L-G., Zhang, W-D., & Shen, Y-H. (2019). The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Advances, 9(38), 21964–21988. https://doi.org/10.1039/C9RA03579F
  12. Egorov, N. S. (Ed.). (1995). Rukovodstvo k prakticheskim zanyatiyam po mikrobiologii [Guide to practical training in microbiology]. Moscow: Moscow State University. (in Russian)
  13. Elbeltagy, A., Nishioka, K., Suzuki, H., Sato, T., Sato, Y.-I., Morisaki, H., Mitsui, H., & Minamisawa, K. (2000). Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Science and Plant Nutrition, 46(3), 617–629. https://doi.org/10.1080/00380768.2000.10409127
  14. Encheva-Malinova, M., Stoyanova, M., Avramova, H., Pavlova, Y., Gocheva, B., Ivanova, I., & Moncheva, P. (2014). Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnology and Biotechnological Equipment, 28(4), 721–727. https://doi.org/10.1080/13102818.2014.947066
  15. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  16. Gromyko, O. (2012). Antagonistic properties of actinomycetes from the ryzosphere of Olea europea L. Visnyk of the Lviv University. Series Biology, 59, 209–215. http://prima.lnu.edu.ua/faculty/biologh/wis/english.htm (in Ukrainian)
  17. Han, K., Kim, S., Park, H., Myeong, J., Park, N., & Kim, E. (2010). Primer for detection of cytochrome P450 hydroxylase specific to polyene.U.S. Patent Application Publication, Pub. No: US 2010/0003669A1.
  18. Hayakawa, M., Sadakata, T., Kajiura, T., & Nonomura, H. (1991). New methods for the highly selective isolation of Micromonospora and Microbispora from soil. Journal of fermentation and bioengineering, 72(5), 320–326. https://doi.org/10.1016/0922-338x(91)90080-z
  19. Hirsch, P., Mevs, U., Kroppenstedt, R. M., Schumann, P., & Stackebrandt, E. (2004). Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Systematic and Applied Microbiology, 27(2), 166–174. https://doi.org/10.1078/072320204322881781
  20. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), 503–507. https://doi.org/10.1007/s00284-008-9276-8
  21. Kaštovská, K., Elster, J., Stibal, M., & Šantrůčková, H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology, 50, 396. https://doi.org/10.1007/s00248-005-0246-4
  22. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S, Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  23. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Practical Streptromyces genetics. John Innes Foundation.
  24. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  25. Kocur, M., Kloos, W. E., & Schleifer, K.-H. (2006). The genus Micrococcus. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes (pp. 961–971). Springer. https://doi.org/10.1007/0-387-30743-5_37
  26. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  27. Learn-Han, L., Yoke-Kqueen, C., Shiran, M. S., Vui-Ling, C. M. W., Nurul-Syakima, A. M., Son, R., & Andrade, H. M. (2012). Identification of actinomycete communities in Antarctic soil from Barrientos Island using PCR-denaturing gradient gel electrophoresis. Genetics and Molecular Research, 11(1), 277–291. https://doi.org/10.4238/2012.February.8.3
  28. Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López-Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and Detoxification of Synthetic Dyes by Mexican Strains of Trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610
  29. List of Prokaryotic names with Standing in Nomenclature. Retrieved March 10, 2021, from https://lpsn.dsmz.de/genus/kribbella
  30. Liu, R., Deng, Z., & Liu, T. (2018). Streptomyces species: ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 50, 74–84. https://doi.org/10.1016/j.ymben.2018.05.015
  31. Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: a virtual screening and molecular docking study. Molecules, 25(16), 3745. https://doi.org/10.3390/molecules25163745
  32. Molina-Montenegro, M. A., Ballesteros, G. I., Castro-Nallar, E., Meneses, C., Gallardo-Cerda, J., & Torres-Diaz, C. (2019). A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomic. Polar Biology, 42, 1825–1835. https://doi.org/10.1007/s00300-019-02556-7
  33. Moradi, A., Tahmourespour, A., Hoodaji, M., & Khorsandi, F. (2011). Effect of salinity on free living-diazotroph and total bacterial populations of two saline soils. African Journal of Microbiology Research, 5(2), 144–148. https://academicjournals.org/journal/AJMR/article-abstract/A0246DF13046
  34. Muñoz, P. A., Márquez, S. L., González-Nilo, F. D., Márquez-Miranda, V., & Blamey, J. M. (2017). Structure and application of antifreeze proteins from Antarctic bacteria. Microbial Cell Factories, 16, 138. https://doi.org/10.1186/s12934-017-0737-2
  35. Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, Article 5794869. https://doi.org/10.1155/2019/5794869
  36. Núñez-Montero, K., & Barrientos, L. (2018). Advances in antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics (Basel), 7(4), 90. https://doi.org/10.3390/antibiotics 7040090
  37. Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., & Kozeretska, I. (2017). Soils of the Argentine Islands, Antarctica: diversity and characteristics. Polarforschung, 86 (2), 83–96. https://doi.org/10.2312/polarforschung.86.2.83
  38. Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V., & Kunakh, V. (2018). Complex survey of the Argentine Islands and Galindez Island (Maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation. Ukrainian Antarctic Journal, 1(17), 73–101. https://doi.org/10.33275/1727-7485.1(17).2018.34 (in Ukrainian)
  39. Pei, C.-X., Liu, Q., Dong, C.-S., Li, H. Q., Jiang, J.-B., & Gao,W.-J. (2010). Diversity and abundance of the bacterial 16S rRNA gene sequences in forestomach of alpacas (Lama pacos) and sheep (Ovis aries). Anaerobe, 16(4), 426–432. https://doi.org/10.1016/j.anaerobe.2010.06.004
  40. Petrus, M. L. C., & Claessen, D. (2014). Pivotal roles for Streptomyces cell surface polymers in morphological differentiation, attachment and mycelial architecture. Antonie Van Leeuwenhoek, 106(1), 127–139. https://doi.org/10.1007/s10482-014-0157-9
  41. Pudasaini, S., Wilson, J., Mukan, J., van Dorst, J., Snape, I., Palmer, A. S., Burns, B. P., & Ferrari, B. C. (2017). Microbial diversity of Browning peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Frontiers in Microbiology, 8, 591. https://doi.org/10.3389/fmicb.2017.00591
  42. Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2012). Leopolic acid A, isolated from a terrestrial actinomycete, Streptomyces sp. Tetrahedron Letters, 53(46), 6300–6301. http://doi.org/10.1016/j.tetlet.2012.09.046
  43. Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2013). Oleaceran: anovel spiro[isobenzofuran-1, 2’-naptho[1,8-bc]furan] isolated from a terrestrial Streptomyces sp. Organic Letters, 15(14), 3487–3489. http://doi.org/10.1021/ol401490u
  44. Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2015). Albaflavenol B, a new sesquiterpene isolated from the terrestrial actinomycete, Streptomyces sp. Journal of Antibiotics, 68, 286–288. http://doi.org/10.1038/ja. 2014.138
  45. Raymond, J. A. (2016). Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum. Environmental Microbiology Reports, 8(1), 14–19. https://doi.org/10.1111/1758-2229.12337
  46. Rosa, L. H., Zani, L. C., Cantrell, C. L., Duke, S. O., Dijck, P. V., Desideri, A., & Rosa, C. A. (2019). Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In L. H. Rosa (Ed.), Fungi of Antarctica (pp. 1–17). Springer, Cham. https://doi.org/10. 1007/978-3-030-18367-7_1
  47. Saitou, N., & Nei, M. (1987). The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  48. Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, 102. https://doi.org/10.1007/s13205-017- 0736-3
  49. Sigmund, J. M., Clark, D. C., Rainey, F. A., & Anderson, A. S. (2003). Detection of eubacterial 3-hydroxy-3-methylglutaryl coenzyme a reductases from natural populations of actinomycetes. Microbial Ecology, 46, 106–112. https://doi.org/10.1007/s00248-002-2029-5
  50. Silva, L. J., Crevelin, E. J., Souza, D. T., Lacerda-Júnior, G. V., de Olideria, V. M., Ruitz, A. L. T. G., Rosa, L. H., Moraes, L. A. B., & Melo, I. S. (2020). Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports, 10, 13870. https://doi.org/10.1038/s41598-020-69786-2
  51. Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038
  52. Tistechok, S., Skvortsova, M., Luzhetskyy, A., Fedorenko, V., Parnikoza, I., & Gromyko, O. (2019). Antagonistic and plant growth promoting properties of actinomycetes from rhizosphere Deschampsia antarctica E. Desv. (Galindez Island, Anarctica). Ukrainian Antarctic Journal, 1(18), 169–177. https://doi.org/10.33275/1727-7485.1(18).2019.140
  53. Tran, P. N., Yen, M.-R., Chiang, C.-Y., Lin, H.-C., & Chen, P.-Y. (2019). Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Applied Microbiology and Biotechnology, 103, 3277–3287. https://doi.org/10.1007/s00253-019-09708-z
  54. Unuofin, J. O., Okoh, A. I., & Nwodo, U. U. (2019). Recovery of laccase-producing gammaproteobacteria from wastewater. Biotechnology Reports, 21, e00320. https://doi.org/10.1016/j.btre.2019.e00320
  55. Vasileva-Tonkova, E., Romanovskaya, V., Gladka, G., Gouliamova, D., Tomova, I., Stoilova-Disheva, M., & Tashyrev, O. (2014). Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World Journal of Microbiology and Biotechnology, 30(4), 1387–1398. https://doi.org/10.1007/s11274-013-1555-2
  56. Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
  57. Winn, M., Fyans, J. K., Zhuo, Y., & Micklefield, J. (2016). Recent advances in engineering nonribosomal peptide assembly lines. Natural Product Reports, 33, 317–347. https://doi.org/10.1039/c5np00099h
  58. Wood, S. A., Kirby, B. M., Goodwin, C. M., Le Roes, M., & Meyers, P. R. (2007). PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp. strain UM16. Journal of applied microbiology, 102(1), 245–253. https://doi.org/10.1111/j.1365-2672.2006.03043.x
  59. Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S., & Hassan, M. N. (2020). Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PloS One, 15(4), e0231348. https://doi.org/10.1371/journal.pone.0231348
  60. Zhang, J. & Zhang, L. (2011). Improvement of an isolation medium for actinomycetes. Modern Applied Science, 5(2), 124–127. https://doi.org/10.5539/mas.v5n2p124