Виділення і характеристика культурабельних актинобактерій, асоційованих з Polytrichum strictum (о. Галіндез, морська Антарктика)
- антарктичні актинобактерії,
- Polytrichum strictum,
- антимікробна активність,
- біосинтетичні гени
Авторське право (c) 2021 Український антарктичний журнал
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Анотація
Метою роботи є оцінка різноманіття актинобактерій, асоційованих з Polytrichum strictum — видом домінантом поширеного антарктичного угруповання торф’янистих мохів, та їхня характеристика як продуцентів біологічно активних речовин. Ізоляти актинобактерій виділяли шляхом прямого висівання та попередньої обробки зразків розчином фенолу та прожарюванням. Культуральні властивості досліджували з використанням діагностичних середовищ. Антимікробну активність вивчали методом подвійних культур. Філогенетичний аналіз базувався на аналізі послідовності гена 16S рРНК. Скринінг біосинтетичних генів здійснювали за допомогою ПЛР з використанням специ-фічних праймерів. Зі зразків P. strictum ізольовано 23 штами актинобактерій 4 родів: Streptomyces (7 ізолятів), Micromonospora (14 ізолятів), Kribbella (1 ізолят) та Micrococcus (1 ізолят). Виявлено вісім психротрофних штамів усіх ідентифікованих родів. Оптимум рН середовища для росту становив від 6 до 10. Чотири ізоляти росли в присутності 7,5% NaCl. Значна кількість ізолятів виявляла широкий спектр ферментативних активностей. Серед досліджених ізолятів актинобактерій виявлено антагоністів широкого спектру патогенних мікроорганізмів, у тому числі мультирезистентного штаму Candida albicans та метицилін-резистентного штаму Staphylococcus aureus. Деякі штами затримували ріст фітопатогенних бактерій: три штами — Erwinia amylovora, по одному штаму — Agrobacterium tumifaciens і Pectobacterium carotovorum. Більше половини ізолятів виявляли антифунгальну активність проти Fusarium oxysporum і Aspergillus niger. Гени біосинтезу, що беруть участь у синтезі широкого спектру біоактивних сполук, були виявлені у більш ніж 80% ізолятів. Антарктичні актинобактерії, виділені в цьому дослідженні, демонструють потенціал як продуценти широкого спектру біологічно активних сполук. Подальші дослідження цих ізолятів можуть призвести до ідентифікації раніше невідомих біологічно активних сполук.
Посилання
- Anderson, A. S., Clark, D. J., Gibbons, P. H., & Sigmund, J. M. (2002). The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes. Journal of Industrial Microbiology and Biotechnology, 29(2), 60–69. https://doi.org/10.1038/sj.jim.7000260
- Axenov-Gribanov, D. V., Voytsekhovskaya, I. V., Tokovenko, B. T., Protasov, E. S., Gamaiunov, S. V., Rebets, Y. V., Luzhetskyy, A.N., & Timofeyev, M.A. (2016). Actinobacteria isolated from an underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia as sources of novel biologically active compounds. PLoS ONE,11(2), e0149216. https://doi.org/10.1371/journal.pone.0149216
- Ayuso, A., Clark, D., González, I., Salazar, O., Anderson, A., & Genilloud, O. (2005). A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Applied Microbiology and Biotechnology, 67, 795–806. https://doi.org/10.1007/s00253-004-1828-7
- Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49, 10–24. https://doi.org/10.1007/s00248-004-0249-6
- Baltz, R. H. (2019). Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. Journal of Industrial Microbiology and Biotechnology, 46(3–4), 281–299. https://doi.org/10.1007/s10295-018- 2115-4
- Bates, J. L., & Liu, P. V. (1963). Complementation of lecithinase activities by closely related pseudomonads: Its taxonomic implication. Journal of bacteriology, 86(3), 585–592. https://doi.org/10.1128/jb.86.3.585-592.1963
- Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
- Boumehira, A. Z., El-Enshasy, H. A., Hacène, H., Elsayed, E. A., Aziz, R., & Park, E. Y. (2016). Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnology and Bioprocess Engineering, 21, 199–223. https://doi.org/10.1007/s12257-015-0574-2
- Carro, L., Castro, J. F., Razmilic, V., Nouioui, I., Pan, C., Igual, J. M., Jaspars, M., Goodfellow, M., Bull, A.T., Asenio, J. A., & Klenk, H.-P. (2019). Uncovering the potential of novel micromonosporae isolated from an extreme hyperarid Atacama Desert soil. Scientific Reports, 9, 4678. https://doi.org/ 10.1038/s41598-019-38789-z
- Chater, K. F. (2013). Streptomyces. In S. Maloy, K. Hughes (Eds.), Brenner’s Encyclopedia of Genetics (2nd ed., pp. 565–567). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01483-2
- Ding, T., Yang L-G., Zhang, W-D., & Shen, Y-H. (2019). The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Advances, 9(38), 21964–21988. https://doi.org/10.1039/C9RA03579F
- Egorov, N. S. (Ed.). (1995). Rukovodstvo k prakticheskim zanyatiyam po mikrobiologii [Guide to practical training in microbiology]. Moscow: Moscow State University. (in Russian)
- Elbeltagy, A., Nishioka, K., Suzuki, H., Sato, T., Sato, Y.-I., Morisaki, H., Mitsui, H., & Minamisawa, K. (2000). Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Science and Plant Nutrition, 46(3), 617–629. https://doi.org/10.1080/00380768.2000.10409127
- Encheva-Malinova, M., Stoyanova, M., Avramova, H., Pavlova, Y., Gocheva, B., Ivanova, I., & Moncheva, P. (2014). Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnology and Biotechnological Equipment, 28(4), 721–727. https://doi.org/10.1080/13102818.2014.947066
- Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Gromyko, O. (2012). Antagonistic properties of actinomycetes from the ryzosphere of Olea europea L. Visnyk of the Lviv University. Series Biology, 59, 209–215. http://prima.lnu.edu.ua/faculty/biologh/wis/english.htm (in Ukrainian)
- Han, K., Kim, S., Park, H., Myeong, J., Park, N., & Kim, E. (2010). Primer for detection of cytochrome P450 hydroxylase specific to polyene.U.S. Patent Application Publication, Pub. No: US 2010/0003669A1.
- Hayakawa, M., Sadakata, T., Kajiura, T., & Nonomura, H. (1991). New methods for the highly selective isolation of Micromonospora and Microbispora from soil. Journal of fermentation and bioengineering, 72(5), 320–326. https://doi.org/10.1016/0922-338x(91)90080-z
- Hirsch, P., Mevs, U., Kroppenstedt, R. M., Schumann, P., & Stackebrandt, E. (2004). Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Systematic and Applied Microbiology, 27(2), 166–174. https://doi.org/10.1078/072320204322881781
- Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), 503–507. https://doi.org/10.1007/s00284-008-9276-8
- Kaštovská, K., Elster, J., Stibal, M., & Šantrůčková, H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology, 50, 396. https://doi.org/10.1007/s00248-005-0246-4
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S, Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Practical Streptromyces genetics. John Innes Foundation.
- Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
- Kocur, M., Kloos, W. E., & Schleifer, K.-H. (2006). The genus Micrococcus. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes (pp. 961–971). Springer. https://doi.org/10.1007/0-387-30743-5_37
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
- Learn-Han, L., Yoke-Kqueen, C., Shiran, M. S., Vui-Ling, C. M. W., Nurul-Syakima, A. M., Son, R., & Andrade, H. M. (2012). Identification of actinomycete communities in Antarctic soil from Barrientos Island using PCR-denaturing gradient gel electrophoresis. Genetics and Molecular Research, 11(1), 277–291. https://doi.org/10.4238/2012.February.8.3
- Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López-Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and Detoxification of Synthetic Dyes by Mexican Strains of Trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610
- List of Prokaryotic names with Standing in Nomenclature. Retrieved March 10, 2021, from https://lpsn.dsmz.de/genus/kribbella
- Liu, R., Deng, Z., & Liu, T. (2018). Streptomyces species: ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 50, 74–84. https://doi.org/10.1016/j.ymben.2018.05.015
- Mazzini, S., Musso, L., Dallavalle, S., & Artali, R. (2020). Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: a virtual screening and molecular docking study. Molecules, 25(16), 3745. https://doi.org/10.3390/molecules25163745
- Molina-Montenegro, M. A., Ballesteros, G. I., Castro-Nallar, E., Meneses, C., Gallardo-Cerda, J., & Torres-Diaz, C. (2019). A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomic. Polar Biology, 42, 1825–1835. https://doi.org/10.1007/s00300-019-02556-7
- Moradi, A., Tahmourespour, A., Hoodaji, M., & Khorsandi, F. (2011). Effect of salinity on free living-diazotroph and total bacterial populations of two saline soils. African Journal of Microbiology Research, 5(2), 144–148. https://academicjournals.org/journal/AJMR/article-abstract/A0246DF13046
- Muñoz, P. A., Márquez, S. L., González-Nilo, F. D., Márquez-Miranda, V., & Blamey, J. M. (2017). Structure and application of antifreeze proteins from Antarctic bacteria. Microbial Cell Factories, 16, 138. https://doi.org/10.1186/s12934-017-0737-2
- Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, Article 5794869. https://doi.org/10.1155/2019/5794869
- Núñez-Montero, K., & Barrientos, L. (2018). Advances in antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics (Basel), 7(4), 90. https://doi.org/10.3390/antibiotics 7040090
- Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., & Kozeretska, I. (2017). Soils of the Argentine Islands, Antarctica: diversity and characteristics. Polarforschung, 86 (2), 83–96. https://doi.org/10.2312/polarforschung.86.2.83
- Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V., & Kunakh, V. (2018). Complex survey of the Argentine Islands and Galindez Island (Maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation. Ukrainian Antarctic Journal, 1(17), 73–101. https://doi.org/10.33275/1727-7485.1(17).2018.34 (in Ukrainian)
- Pei, C.-X., Liu, Q., Dong, C.-S., Li, H. Q., Jiang, J.-B., & Gao,W.-J. (2010). Diversity and abundance of the bacterial 16S rRNA gene sequences in forestomach of alpacas (Lama pacos) and sheep (Ovis aries). Anaerobe, 16(4), 426–432. https://doi.org/10.1016/j.anaerobe.2010.06.004
- Petrus, M. L. C., & Claessen, D. (2014). Pivotal roles for Streptomyces cell surface polymers in morphological differentiation, attachment and mycelial architecture. Antonie Van Leeuwenhoek, 106(1), 127–139. https://doi.org/10.1007/s10482-014-0157-9
- Pudasaini, S., Wilson, J., Mukan, J., van Dorst, J., Snape, I., Palmer, A. S., Burns, B. P., & Ferrari, B. C. (2017). Microbial diversity of Browning peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Frontiers in Microbiology, 8, 591. https://doi.org/10.3389/fmicb.2017.00591
- Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2012). Leopolic acid A, isolated from a terrestrial actinomycete, Streptomyces sp. Tetrahedron Letters, 53(46), 6300–6301. http://doi.org/10.1016/j.tetlet.2012.09.046
- Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2013). Oleaceran: anovel spiro[isobenzofuran-1, 2’-naptho[1,8-bc]furan] isolated from a terrestrial Streptomyces sp. Organic Letters, 15(14), 3487–3489. http://doi.org/10.1021/ol401490u
- Raju, R., Gromyko, O., Fedorenko, V., Luzhetskyy, A., & Muller, R. (2015). Albaflavenol B, a new sesquiterpene isolated from the terrestrial actinomycete, Streptomyces sp. Journal of Antibiotics, 68, 286–288. http://doi.org/10.1038/ja. 2014.138
- Raymond, J. A. (2016). Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum. Environmental Microbiology Reports, 8(1), 14–19. https://doi.org/10.1111/1758-2229.12337
- Rosa, L. H., Zani, L. C., Cantrell, C. L., Duke, S. O., Dijck, P. V., Desideri, A., & Rosa, C. A. (2019). Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In L. H. Rosa (Ed.), Fungi of Antarctica (pp. 1–17). Springer, Cham. https://doi.org/10. 1007/978-3-030-18367-7_1
- Saitou, N., & Nei, M. (1987). The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, 102. https://doi.org/10.1007/s13205-017- 0736-3
- Sigmund, J. M., Clark, D. C., Rainey, F. A., & Anderson, A. S. (2003). Detection of eubacterial 3-hydroxy-3-methylglutaryl coenzyme a reductases from natural populations of actinomycetes. Microbial Ecology, 46, 106–112. https://doi.org/10.1007/s00248-002-2029-5
- Silva, L. J., Crevelin, E. J., Souza, D. T., Lacerda-Júnior, G. V., de Olideria, V. M., Ruitz, A. L. T. G., Rosa, L. H., Moraes, L. A. B., & Melo, I. S. (2020). Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports, 10, 13870. https://doi.org/10.1038/s41598-020-69786-2
- Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038
- Tistechok, S., Skvortsova, M., Luzhetskyy, A., Fedorenko, V., Parnikoza, I., & Gromyko, O. (2019). Antagonistic and plant growth promoting properties of actinomycetes from rhizosphere Deschampsia antarctica E. Desv. (Galindez Island, Anarctica). Ukrainian Antarctic Journal, 1(18), 169–177. https://doi.org/10.33275/1727-7485.1(18).2019.140
- Tran, P. N., Yen, M.-R., Chiang, C.-Y., Lin, H.-C., & Chen, P.-Y. (2019). Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Applied Microbiology and Biotechnology, 103, 3277–3287. https://doi.org/10.1007/s00253-019-09708-z
- Unuofin, J. O., Okoh, A. I., & Nwodo, U. U. (2019). Recovery of laccase-producing gammaproteobacteria from wastewater. Biotechnology Reports, 21, e00320. https://doi.org/10.1016/j.btre.2019.e00320
- Vasileva-Tonkova, E., Romanovskaya, V., Gladka, G., Gouliamova, D., Tomova, I., Stoilova-Disheva, M., & Tashyrev, O. (2014). Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World Journal of Microbiology and Biotechnology, 30(4), 1387–1398. https://doi.org/10.1007/s11274-013-1555-2
- Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
- Winn, M., Fyans, J. K., Zhuo, Y., & Micklefield, J. (2016). Recent advances in engineering nonribosomal peptide assembly lines. Natural Product Reports, 33, 317–347. https://doi.org/10.1039/c5np00099h
- Wood, S. A., Kirby, B. M., Goodwin, C. M., Le Roes, M., & Meyers, P. R. (2007). PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp. strain UM16. Journal of applied microbiology, 102(1), 245–253. https://doi.org/10.1111/j.1365-2672.2006.03043.x
- Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S., & Hassan, M. N. (2020). Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PloS One, 15(4), e0231348. https://doi.org/10.1371/journal.pone.0231348
- Zhang, J. & Zhang, L. (2011). Improvement of an isolation medium for actinomycetes. Modern Applied Science, 5(2), 124–127. https://doi.org/10.5539/mas.v5n2p124