Influence of regional variations in ocean characteristics and trophic relationships on cadmium accumulation in Antarctic pelagic and benthic organisms
- benthic communities,
- bioaccumulation,
- biophysical environmental settings,
- Cd,
- pelagic food webs
- Southern Ocean ...More
Copyright (c) 2025 Ukrainian Antarctic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Cadmium (Cd) concentrations in Antarctic marine organisms are much higher than expected for such a remote, pristine environment. Bioaccumulation is principally due to water circulation and upwelling, as well as the nutrient-like behaviour of Cd in areas of high primary productivity. The low availability of zinc (Zn) and other trace elements favours Cd use by diatoms as a cofactor in carbon anhydrase, and the metal is also highly concentrated by small autotrophs and heterotrophs that develop a high surface-to-volume ratio. Thus, in pelagic food webs, grazing micro- and mesozooplankton, as well as the juvenile stages of Antarctic krill with a small oral apparatus, accumulate high concentrations of Cd and transfer the metal to amphipods and other secondary consumers. In coastal marine ecosystems with high primary productivity, such as those bordering the Ross Sea, a large amount of phytoplankton sinks in the summer, contributing to Cd accumulation in benthic invertebrates. Total body Cd concentrations are lower in benthic and pelagic fish, seabirds, and marine mammals than in many invertebrate species. Seabirds that feed on amphipods and other crustaceans smaller than Antarctic krill accumulate higher amounts of Cd. Comparisons of Cd content in representative benthic invertebrate species, fish, and penguins from coastal marine ecosystems at King George Island and Terra Nova Bay (Ross Sea) indicate much higher bioaccumulation in the latter area. This is likely due to enhanced upwelling of seawater, high concentrations of soluble Cd in surface waters, notable algal blooms in spring and summer, and the involvement of invertebrate taxa other than Antarctic krill in transferring energy and metals along pelagic food webs.
References
- Ahn, I.-Y., Kim, K-W., & Choi, H. J. (2002). A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George Island: variations with sex and body parts. Marine Pollution Bulletin, 44(5), 424–431. https://doi.org/10.1016/S0025-326X(01)00297-1
- Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400(1–3), 212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062
- Bargagli, R., & Rota, E. (2024a). Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environmental Science: Advances, 3(4), 543–560. https://doi.org/10.1039/d3va00113J
- Bargagli, R., & Rota, E. (2024b). Mercury biogeochemistry and biomagnification in the Mediterranean Sea: urrent knowledge and future prospects in the context of climate change. Coasts, 4(1), 89–107. https://doi.org/10.3390/coasts4010006
- Bargagli, R., & Rota, E. (2025). Drivers of mercury accumulation in juvenile Antarctic krill, epipelagic fish and Adélie penguins in different regions of the Southern Ocean. Environments, 12(6), 180. https://doi.org/10.3390/environments12060180
- Bargagli, R., Nelli, L., Ancora, S., & Focardi, S. (1996). Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology, 16, 513–520. https://doi.org/10.1007/BF02329071
- Boyle, E. A., Sclater, F., & Edmond, J. M. (1976). On the marine geochemistry of cadmium. Nature, 263, 42–44. https://doi.org/10.1038/263042a0
- Brand, L. E., Sunda, W. G., & Guillard, R. R. L. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96(3), 225–250. https://doi.org/10.1016/0022-0981(86)90205-4
- Bustamante, P., Bocher, P., Chérel, Y., Miramand, P., & Caurant, F. (2003). Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Science of the Total Environment, 313(1–3), 25–39. https://doi.org/10.1016/S0048-9697(03)00265-1
- Bustamante, P., Cherel, Y., Caurant, F., & Miramand, P. (1998). Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean. Polar Biology, 19(4), 264–271. https://doi.org/10.1007/s003000050244
- Capodaglio, G., Scarponi, G., Toscano, G., & Cescon, P. (1991). Cadmium complexation in surface seawater of Terra Nova Bay (Antarctica). Annali di Chimica, 81, 279–296.
- Dalla Riva, S., Abelmoschi, M. L., Magi, E., & Soggia, F. (2004). The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea– Northern Victoria Land). Chemosphere, 56(1), 59–69. https://doi.org/10.1016/j.chemosphere.2003.12.026
- de Baar, H. J. W., van Heuven, S. M. A. C., Abouchami, W., Xue, Z., Galer, S. J. G., Rehkämper, M., Middag, R., & van Ooijen, J. (2017). Interactions of dissolved CO2 with cadmium isotopes in the Southern Ocean. Marine Chemistry, 195, 105–121. https://doi.org/10.1016/j.marchem.2017.06.010.
- Deheyn, D. D., Gendreau, P., Baldwin, R. J., & Latz, M. I. (2005). Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Marine Environmental Research, 60(1), 1–33. https://doi.org/10.1016/j.marenvres.2004.08.001
- de Moreno, J. E. A., Gerpe, M. S., Moreno, V. J., & Vodopivez, C. (1997). Heavy metals in Antarctic organisms. Polar Biology, 17, 131–140. https://doi.org/10.1007/s003000050115
- de Souza, G. F., & Morrison, A. K. (2024). The Southern Ocean hub for nutrients, micronutrients, and their isotopes in the global ocean. Oceanography, 37(2), 46–59. https://doi.org/10.5670/oceanog.2024.414
- Dietz, R., Nørgaard, J., & Hansen, J. C. (1998). Have Arctic marine mammals adapted to high cadmium levels? Marine Pollution Bulletin, 36(6), 490–492. https://doi.org/10.1016/S0025-326X(98)00045-9
- Ericson, J. A., Hellessey, N., Kawaguchi, S., Nicol, S., Nichols, P. D., Hoem, N., & Virtue, P. (2018). Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Communications Biology, 1, 190. https://doi.org/10.1038/s42003-018-0195-3
- Espejo, W., Padilha J. A., Kidd, K. A., Dorneles, P. R., Barra, R., Malm, O., Chiang, G., & Celis, J. E. (2018). Trophic transfer of cadmium in marine food webs from Western Chilean Patagonia and Antarctica. Marine Pollution Bulletin, 137, 246–251. https://doi.org/10.1016/j.marpolbul.2018.10.022
- Farı́as, S., Arisnabarreta, S. P., Vodopivez, C., & Smichowski, P. (2002). Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(12), 2133–2140. https://doi.org/10.1016/S0584-8547(02)00183-0
- Finkel, Z. V., Quigg, A. S., Chiampi, R. K., Schofield, O. E., & Falkowski, P. G. (2007). Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton. Limnology and Oceanography, 52(3), 1131–1138. https://doi.org/10.4319/lo.2007.52.3.1131
- Fromant, A., Carravieri, A., Bustamante, P., Labadie, P., Budzinski, H., Peluhet, L., Churlaud, C., Chastel, O., & Cherel, Y. (2016). Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Sothern Ocean. Science of the Total Environment, 544, 754–764. https://doi.org/10.1016/j.scitotenv.2015.11.114
- Ge, Y., Zhang, R., Zhu, Z., Zhao, J., Zhu, Z., Li, Z., Li, B., Zhang, Z., Zhang, Y., Zhou, M., John, S., & Smith Jr., W. O. (2024). Distribution of nutrients, trace metals, phytoplankton composition, and elemental consumption in the Ross and Amundsen Seas. Marine Chemistry, 265–266, 104436. https://doi.org/10.1016/j.marchem.2024.104436
- Goutte, A., Cherel, Y., Churlaud, C., Ponthus, J.-P., Massè, G., & Bustamante, P. (2015). Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels. Science of the Total Environment, 538, 743–749. https://doi.org/10.1016/j.scitotenv.2015.08.103
- Haberman, K. L., Ross, R. M., & Quetin, L. B. (2003). Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. Journal of Experimental Marine Biology and Ecology, 283(1–2), 97–113. https://doi.org/10.1016/S0022-0981(02)00467-7
- Han, S., & Zhu, G. (2023). Niche separation, dynamics, and transport pattern of trace elements along Antarctic krill (Euphausia superba) to its exclusive predator, mackerel icefish (Champsocephalus gunnari). Marine Pollution Bulletin, 191, 114956. https://doi.org/10.1016/j.marpolbul.2023.114956
- Hennig, H. F.-K. O., Eagle, G. A., McQuaid, C. D., & Rickett, L. H. (1985). Metal concentrations in Antarctic zooplankton species. In W. R. Siegfried, P. R. Condy, & R. M. Laws (Eds.), Antarctic nutrient cycles and food webs (pp. 656–661). Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-82275-9_91
- Honda, K., Yamamoto, Y., Kato, H., & Tatsukawa, R. (1987). Heavy metal accumulations and their recent changes in southern minke whales Balaenoptera acutorostrata. Archives of Environmental Contamination and Toxicology, 16, 209–216. https://doi.org/10.1007/BF01055801
- Jensen, E. L., Clement, R., Kosta, A., Maberly, S. C., & Gontero, B. (2019). A new widespread subclass of carbonic anhydrase in marine phytoplankton. The ISME Journal, 13(8), 2094–2106. https://doi.org/10.1038/s41396-019-0426-8
- Jerez, S., Motas, M., Benzal, J., Diaz, J., Vidal, V., D’Amico, V., & Barbosa, A. (2013). Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area. Environmental Science and Pollution Research, 20, 3300–3311. https://doi.org/10.1007/s11356-012-1235-z
- Jiang, Z., Liao, E., Li, Z., & Zhang, R. (2025). Modeling the global ocean distribution of dissolved cadmium based on machine learning–SHAP algorithm. Science of the Total Environment, 958(1), 177951. https://doi.org/10.1016/j.scitotenv.2024.177951
- Kahle, J., & Zauke, G.-P. (2003). Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51(5), 409–417. https://doi.org/10.1016/S0045-6535(02)00855-X
- Krumhardt, K. M., Long, M. C., Sylvester, Z. T., & Petrik, C. M. (2022). Climate drivers of Southern Ocean phytoplankton community composition and potential impacts on higher trophic levels. Frontiers in Marine Science, 9, 916140. https://doi.org/10.3389/fmars.2022.916140
- Kunito, T., Watanabe, I., Yasunaga, G., Fujise, Y., & Tanabe, S. (2002). Using trace elements in skin to discriminate the populations of minke whales in southern Hemisphere. Marine Environmental Research, 53(2), 175–197. https://doi.org/10.1016/s0141-1136(01)00119-2
- La Mesa, M., Eastman, J. T., & Vacchi, M. (2004). The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biology, 27, 321–338. https://doi.org/10.1007/s00300-004-0599-z
- La Mesa, M., Vacchi, M., Castelli, A., & Diviacco, G. (1997). Feeding ecology of two nototheniid fishes, Trematomus hansoni and Trematomus loennbergii, from Terra Nova Bay, Ross Sea. Polar Biology, 17, 62–68. https://doi.org/10.1007/s003000050105
- Lannuzel, D., Bowie, A. R., van der Merwe, P. C., Townsend, A. T., & Schoemann, V. (2011). Distribution of dissolved and particulate metals in Antarctic sea ice. Marine Chemistry, 124(1–4), 134–146. https://doi.org/10.1016/j.marchem.2011.01.004
- Lee, C.-S., & Fisher, N. S. (2016). Methylmercury uptake by diverse marine phytoplankton. Limnology and Oceanography, 61(5), 1626–1639. https://doi.org/10.1002/lno.10318
- Mauri, M., Orlando, E., Nigro, M., & Regoli, F. (1990). Heavy metals in the Antarctic scallop Adamussium colbecki. Marine Ecology Progress Series, 67(1), 27–33.
- Mazloff, M. R., Verdy, A., Gille, S. T., Johnson, K. S., Cornuelle, B. D., & Sarmiento, J. (2023). Southern Ocean acidification revealed by biogeochemical-Argo floats. Journal of Geophysical Research: Oceans, 128(5), e2022JC019530. https://doi.org/10.1029/2022JC019530
- McClurg, T. P. (1984). Trace metals and chlorinated hydrocarbons in Ross seals from Antarctica. Marine Pollution Bulletin, 15(10), 384–389. https://doi.org/10.1016/0025-326X(84)90173-5
- Mekkes, L., Sepúlveda-Rodríguez, G., Bielkinaité, G., Wall-Palmer, D., Brummer, G.-J. A., Dämmer, L. K., Huisman, J., van Loon, E., Renema, W., & Peijnenburg, K. T. C. A. (2021). Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa. Frontiers in Marine Science, 8, 581432. https://doi.org/10.3389/fmars.2021.581432
- Mirzoeva, N., Tereschchenko, N., Paraskiv, A., Proskurnin, V., Stetsiuk, A., & Korotkov, A. (2022). Metals and metalloids in Antarctic krill and water in deep Weddell Sea areas. Marine Pollution Bulletin, 178, 113624. https://doi.org/10.1016/j.marpolbul.2022.113624
- Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., & Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science, 323(5920), 1470–1473. https://doi.org/10.1126/science.1164533
- Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M., & Lauvset, S. K. (2019). Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nature Climate Change, 9, 313–317. https://doi.org/10.1038/s41558-019-0418-8
- Nigro, M., Regoli, F., Rocchi, R., & Orlando, E. (1997). Heavy metals in Antarctic molluscs. In B. Battaglia, J. Valencia, & D. W. H. Walton (Eds.), Antarctic communities: species, structure and survival (pp. 409–412). Cambridge University Press, Cambridge, UK.
- Nygård, T., Lie, E., Røv, N., & Steinnes, E. (2001). Metal dynamics in an Antarctic food chain. Marine Pollution Bulletin, 42(7), 598–602. https://doi.org/10.1016/S0025-326X(00)00206-X
- Palmer Locarnini, S. J., & Presley, B. J. (1995). Trace element concentrations in Antarctic krill, Euphausia superba. Polar Biology, 15, 283–288. https://doi.org/10.1007/BF00239849
- Petri, G., & Zauke, G.-P. (1993). Trace metals in crustaceans in the Antarctic Ocean. Ambio, 22, 529–536.
- Potapowicz, J., Szumińska, D., Szopińska, M., & Polkowska, Ż. (2019). The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. Science of the Total Environment, 651, 1, 1534–1548. https://doi.org/10.1016/j.scitotenv.2018.09.168
- Price, N. M., & Morel, F. M. M. (1990). Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344, 658–660. https://doi.org/10.1038/344658a0
- Rainbow, P. S. (1989). Copper, cadmium, and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Marine Biology, 103, 513–518. https://doi.org/10.1007/BF00399583
- Rogers, A. D., Frinault, B. A. V., Barnes, D. K. A., Bindoff, N. L., Downie, R., Ducklow, H. W., Friedlaender, A. S., Hart, T., Hill, S. L., Hofmann, E. E., Linse, K., McMahon, C. R., Murphy, E. J., Pakhomov, E. A., Reygondeau, G., Staniland, I. J., Wolf-Gladrow, D. A., & Wright, R. M. (2020). Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annual Review of Marine Science, 12, 87–120. https://doi.org/10.1146/annurev-marine-010419-011028
- Runcie, J. W., & Riddle, M. J. (2004). Metal concentrations in macroalgae from East Antarctica. Marine Pollution Bulletin, 49(11–12), 1114–1119. https://doi.org/10.1016/j.marpolbul.2004.09.001
- Schneider, R., Steinhagen-Schneider, G., & Drescher, H. E. (1985). Organochlorines and heavy metals in seals and birds from the Weddell Sea. In W. R. Siegfried, P. R. Condy, & R. M. Laws (Eds.), Antarctic nutrient cycles and food webs (pp. 652–655). Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-82275-9_90
- Schofield, O., Cimino, M., Doney, S., Friedlaender, A., Meredith, M., Moffat, C., Stammerjohn, S., Van Mooy, B., & Steinberg, D. (2024). Antarctic pelagic ecosystems on a warming planet. Trends in Ecology & Evolution, 39(12), 1141–1153. https://doi.org/10.1016/j.tree.2024.08.007
- Shi, W., Zhao, X., Han, Y., Che, Z., Chai, X., & Liu, G. (2016). Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Scientific Reports, 6, 20197. https://doi.org/10.1038/srep20197
- Sieber, M., Conway, T. M., de Souza, G. F., Obata, H., Takano, S., Sohrin, Y., & Vance, D. (2019a). Physical and biogeochemical controls on the distribution of dissolved cadmium and its isotopes in the Southwest Pacific Ocean. Chemical Geology, 511, 494–509. https://doi.org/10.1016/j.chemgeo.2018.07.021
- Sieber, M., Conway, T. M., de Souza, G. F., Hassler, C. S., Ellwood, M. J., & Vance, D. (2019b). High-resolution Cd isotope systematics in multiple zones of the Southern Ocean from the Antarctic Circumnavigation Expedition. Earth and Planetary Science Letters, 527, 115799. https://doi.org/10.1016/j.epsl.2019.115799
- Signa, G., Calizza, E., Costantini, M. L., Tramati, C., Sporta Caputi, S., Mazzola A., Rossi L., & Vizzini, S. (2019). Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Environmental Pollution, 246, 772–781. https://doi.org/10.1016/j.envpol.2018.12.071
- Smichowski, P., Vodopivez, C., Muñoz-Olivas, R., & Gutierrez, A.M. (2006). Monitoring trace elements in selected organs of Antarctic penguin (Pygoscelis adeliae) by plasma-based techniques. Microchemical Journal, 82(1), 1–7. https://doi.org/10.1016/j.microc.2005.04.001
- Steinhagen-Schneider, G. (1986). Cadmium and copper levels in seals, penguins and skuas from the Weddell Sea in 1982/1983. Polar Biology, 5, 139–143. https://doi.org/10.1007/BF00441693
- Sun, Y., & Ellwood, M. J. (2025). Calcium carbonate cycling in the Southern Ocean: insights from dissolved calcium and potential alkalinity tracers. Limnology and Oceanography Letters, 10(2), 254–263. https://doi.org/10.1002/lol2.10457
- Tait, L. W., Chin, C., Nelson, W., George, S., Marriott, P., O’Driscoll, R. L., Lamare, M., Mills, V. S., & Cummings, V. J. (2024). Deep-living and diverse Antarctic seaweeds as potentially important contributors to global carbon fixation. Communications Earth & Environment, 5, 205. https://doi.org/10.1038/s43247-024-01362-2
- Tesán-Onrubia, J. A., Heimbürger-Boavida, L.-E., Dufour, A., Harmelin-Vivien, M., García-Arévalo, I., Knoery, J., Thomas, B., Carlotti, F., Tedetti, M., & Bănaru, D. (2023). Bioconcentration, bioaccumulation and biomagnification of mercury in plankton of the Mediterranean Sea. Marine Pollution Bulletin, 194, B, 115439. https://doi.org/10.1016/j.marpolbul.2023.115439
- Tian, H.-A., van Manen, M., Wille, F., Jung, J., Lee, S.-H., Kim, T.-W., Aoki, S., Eich, C., Brussaard, C. P. D., Reichart, G.-J., Conway, T. M., & Middag, R. (2023). The biogeochemistry of zinc and cadmium in the Amundsen Sea, coastal Antarctica. Marine Chemistry, 249, 104223. https://doi.org/10.1016/j.marchem.2023.104223
- Trombini, C., Rodríguez-Moro, G., Ramírez Acosta, S., Gómez Ariza, J. L., Blasco, J., & García-Barrera, T. (2022). Single and joint effects of cadmium and selenium on bioaccumulation, oxidative stress and metabolomic responses in the clam Scrobicularia plana. Chemosphere, 308(3), 136474. https://doi.org/10.1016/j.chemosphere.2022.136474
- Ulrich, A. E. (2019). Cadmium governance in Europe’s phosphate fertilizers: Not so fast? Science of the Total Environment, 650, 1, 541–545. https://doi.org/10.1016/j.scitotenv.2018.09.014
- Vance, D., Little, S. H., de Souza, G. F., Khatiwala, S., Lohan, M. C., & Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience, 10, 202–206. https://doi.org/10.1038/ngeo2890
- Vodopivez, C., Curtosi, A., Villaamil, E., Smichowski, P., Pelletier, E., & Mac Cormack, W. P. (2015). Heavy metals in sediments and soft tissues of the Antarctic clam Laternula elliptica: More evidence as a? possible biomonitor of coastal marine pollution at high latitudes? Science of the Total Environment, 502, 375–384. https://doi.org/10.1016/j.scitotenv.2014.09.031
- Wang, D., & Zhu, G. (2022). Antarctic krill (Euphausia superba) as a bioindicator of trace elements reflects regional heterogeneity in marine environments in the northern Antarctic Peninsula, Antarctic. Ecological Indicators, 136, 108596. https://doi.org/10.1016/j.ecolind.2022.108596
- Webb, A. L., Hughes, K. A., Grand, M. M., Lohan, M. C., & Peck, L. S. (2020). Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Science of the Total Environment, 698, 134268. https://doi.org/10.1016/j.scitotenv.2019.134268
- Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y., & Morel, F. M. M. (2008). Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature, 452, 56–61. https://doi.org/10.1038/nature06636
- Yamamoto, Y., Honda, K., Hidaka, H., & Tatsukawa, R. (1987). Tissue distribution of heavy metals in Weddell seals (Leptonychotes weddellii). Marine Pollution Bulletin, 18(4), 164–169. https://doi.org/10.1016/0025-326X(87)90240-2
- Yang, G., Atkinson, A., Pakhomov, E. A., Hill, S. L., & Racault, M.-F. (2022). Massive circumpolar biomass of Southern Ocean zooplankton: Implications for food web structure, carbon export, and marine spatial planning. Limnology and Oceanography, 67(11), 2516–2530. https://doi.org/10.1002/lno.12219
- Yin, X., Liu, X., Sun, L., Zhu, R., Xie, Z., & Wang, Y. (2006). A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Science of the Total Environment, 371(1–3), 252–257. https://doi.org/10.1016/j.scitotenv.2006.07.022
- Zhang, Z., Ma, J., Chen, F., Chen, Y., Pan, K., & Liu, H. (2024). Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification. Journal of Hazardous Materials, 463, 132804. https://doi.org/10.1016/j.jhazmat.2023.132804
